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Abstract
Stylized facts offer a way for validating and calibrating simulation models in data-scarce applications.
SF-DSL formalizes such facts for automated model checking against simulation output. This paper
extends SF-DSL with quantitative semantics to compute robustness and penalty scores, enabling
optimization-based calibration. A case study using an epidemiological model demonstrates how
these metrics support the identification of parameter configurations that best satisfy behavioral
requirements.
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1 Introduction

Over the last decades, modeling and simulation have become indispensable tools for analyzing,
understanding, and predicting the behavior of complex systems. Successfully building a
simulation model suited for these tasks typically involves successive steps of model refinement,
validation, and calibration. Both validation and calibration heavily rely on data to ensure
that the simulation results reflect real-world behavior [9, 19]. However, in many application
fields, there is a lack of real-world data, e.g., due to the absence of historical data, high data
collection costs, or privacy concerns [10]. But without proper validation and calibration,
models risk producing misleading results, which can lead to incorrect conclusions [20].

Thus, in applications such as economics [7, 16], demography [21], or epidemiology [11], a
common approach has become the use of so-called stylized facts [14]. Stylized facts summarize
empirical findings and established domain-specific knowledge, often in natural language.
E.g., a recently established fact about the dynamics of COVID-19 is that a “higher share of
elderly in the county is correlated with higher death rates” [11]. In [22], a domain-specific
language (DSL) was developed that enables the formalization of stylized facts (here referred
to as SF-DSL). Its syntax stays close to natural language expressions but enriches them with
clearly defined mathematical operators.

Based on the formalization and a custom model checker, stylized facts can be automatically
evaluated on simulation model outputs [22]. Typically, a set of stylized facts is defined for a
simulation model, representing its behavioral requirements. If all (or at least an important
subset) of these facts are fulfilled, the model can be considered as validated.
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In contrast, when calibrating simulation models, selected parameters or structures of
the simulation model are adjusted. The goal is to identify the parameter or structural
configuration that ensures that the simulation outputs fulfill the requirements of the model
in the best possible way. In order to enable effective, automated calibration with stylized
facts, a quantitative measure is required that can be optimized accordingly.

This paper therefore aims to enhance SF-DSL with a quantitative semantics that enables
the model checker to not only produce a Boolean decision but a measure of robustness that
expresses the degree of fulfillment as well as a penalty value that can steer a calibration
algorithm towards the optimal (robust, ideally non-penalized) model parameters or structure.
A case study with a classic epidemiological model illustrates the usage of SF-DSL to express
model requirements and the calculation of the quantitative metrics for different assignments
of the rate parameters.

2 SF-DSL’s Formalization of Stylized Facts

SF-DSL is a domain-specific language that enables the formalization of stylized facts [22, 13].
It allows describing properties of time series, the relation between multiple time series, as well
as temporal trends within and across time series. SF-DSL contains common operators known
from temporal logic, which have been extended to support relative time intervals (see Listing
1) which allow for more specific temporal expressions, not to be confused with time intervals
as in metric interval temporal logic (MITL) [12]. The language also defines unary and binary
arithmetic operators on time series that return another time series, e.g., the element-wise +,
-, *, /, as well as the squared operator. In addition, univariate and bivariate functions are
included that result in a scalar value, such as mean, standard deviation, autocorrelation, and
cross-correlation. Moreover, predicates are defined, such as is heavy-tailed and is close to zero,
returning a Boolean value. These operators, functions, and predicates can be used to specify
desirable properties of the simulation output. The following expression combines some of the
previously described operators to formalize the condition for being a post-transitional country,
thereby relating the time series of life expectancy, crude birth rate (CBR), and fertility (See
Listing 1) as described in [4]. In this fact, the condition e2 (“fertility is falling...”) is expected
to become true within the relative time interval of 5 to 20 time units after condition e1:

Listing 1 Exemplary stylized fact, which was formalized with SF-DSL
(life_expectancy > 50 and CBR < 0.03) after (fertility is falling for 5 years or
CBR is falling for 5 years) within 5 to 20 years;

SF-DSL ships with a model checker, which allows for the automatic evaluation of stylized
facts for given simulation output data. Previously, SF-DSL was used during model develop-
ment to validate model versions against specified model requirements [22]. The applicability
of SF-DSL in model development would be further enhanced if the stylized facts could also
be used for model calibration, as discussed in the following section.

3 Expansion of SF-DSL with a Quantitative Interpretation

To be able to use the model checker for model calibration, a distance measure must be
calculated to indicate how closely an expression is satisfied. Accordingly, all operators
contained in SF-DSL must be evaluated not only qualitatively but also quantitatively.



J. N. Martin, P. Wilsdorf and A. M. Uhrmacher 23:3

3.1 Related Work
The notion of robustness as a definition of distance between a trajectory of a system and a
temporal-logic behavioral property in signal temporal logic (STL) has been defined in the
context of system verification [5], and allows for distinguishing between marginal and more
robust satisfaction/violation of a property. The robustness degree can be measured as the
distance between the system behavior and the boundary of the set of all behaviors that
satisfy the property. It relies on ratio scale variables. This robustness is more positive as the
behavior lies deeper inside the satisfying set, and more negative the further it is outside of it.
The point-wise robustness can be calculated on a time series, e.g., for the inequality x > 5,
by evaluating the difference x− 5, resulting in a robustness value of −3 for x = 2 at a given
time t. When a temporal operator and interval are specified for which a formula is expected
to hold, point-wise robustness cannot capture how long in this interval the property was
satisfied or violated. Thus, left and right time robustness can be calculated to capture how
far back/forward in time we can shift from a time t in the interval so that the truth value
remains the same [5]. The overall robustness value could then be the longest duration for
which the formula was satisfied/violated in the interval. Alternative formulations of time
robustness do not use the longest duration but the maximum (or minimum, depending on
the logic operator used) point-wise robustness that occurred in that interval [15].

In [2] the robustness definition was extended for stochastic models. For a given formula,
they calculate a distribution of robustness degrees over all possible system trajectories. To
receive a single robustness score, the expected value can be taken. In [3] this approach
was applied and implemented for smoothed model checking and parameter identification
with MITL formulas. In the following, we refer to their implementation, when mentioning
robustness calculation for MITL.

3.2 Distance Measures for SF-DSL Operators
We adopt the robustness definitions by [2, 3], and slightly adapt them to the needs of SF-DSL
where necessary. In addition, we design new distance metrics for the operators not yet
covered. In the following, x describes a multivariate time series, xk is the kth time series
from x and Index() return all indices of a given time series or list.

As described in Section 3.1, the robustness ρ of a formula is based on distances. For
expressions such as v > c the robustness is ρ(v < c) = c− v. In the case of the expression v
is positive c corresponds to 0. If v < c is to apply, the subtrahend and minuend are swapped.
If a value range is specified, as in v is between c1 and c2, robustness is calculated using
ρ(c1 < v < c2) = min(v − c1, c2 − v). Here c, c1 and c2 are constant thresholds and v is a
scalar value. Similarly, distances can be calculated when evaluating functions on the time
series, such as mean(xk) < c or the cross-correlation CC(xk,xl) < c. There, the function
value is used in the difference calculation instead of v. Other expressions for describing a
time series, specific to SF-DSL, use the same definition of distance. For example, if a time
series is described as exponentially distributed, a p-value is calculated using a goodness-of-fit
algorithm [6]. The robustness is determined by the distance between the p-value and a in
SF-DSL pre-defined significance level. Other examples are the predicates is growing or is
falling. There, the distance is calculated from the calculated slope of the time series and the
growing/falling threshold defined in SF-DSL.

Given the robustness values for “simple expressions”, we can adopt the quantitative
semantics for the temporal logic operators and, or, not, Always (□) and Finally (♢) as
defined in the implementation of the robustness calculation in [3]. The robustness of the

CVIT 2016



23:4 A Quantitative Metric to Evaluate the Satisfaction of Stylized Facts

and/or operators is the minimum/maximum robustness of the two connected expressions.
The not operator changes the sign of the robustness of the negated expression. The robustness
of an expression Always φ (where φ may be one of the expressions described above) is the
minimum point-wise robustness over the entire time series. Reversely, the robustness of
Finally φ can be calculated by taking the maximum point-wise robustness.

ρ(φ1 ∧ φ2,x, t) = min(ρ(φ1,x, t), ρ(φ2,x, t)) ρ(□φ,x, t) = min
i∈Index(x)

(ρ(φ,x, i))

ρ(φ1 ∨ φ2,x, t) = max(ρ(φ1,x, t), ρ(φ2,x, t)) ρ(♢φ,x, t) = max
i∈Index(x)

(ρ(φ,x, i))

ρ(¬φ,x, t) = −ρ(φ,x, t)

The evaluations of expressions using the quantifiers Forall (∀)/Exists (∃) v in {v1,...,vn}
φ(v) are similar to the robustness calculations of Always/Finally.

ρ(∀v in {v1,. . . ,vn} φ(v),x, t) = min
v∈{v1,...,vn}

(ρ(φ(v),x, t))

ρ(∃v in {v1,. . . ,vn} φ(v),x, t) = max
v∈{v1,...,vn}

(ρ(φ(v),x, t))

In SF-DSL, temporal logic operators can optionally be supplemented with a relative time
interval [t′, t′′] which, depending on the operator, can mean a tightening or relaxation of the
requirement. In the case of the expression φ1 precedes φ2 within 1 to 5 time steps, the time
interval describes the time window in which φ1 had to be fulfilled before the first occurrence
of φ2 (at index i∗). In this case, φ1 would therefore have to be fulfilled at least once within
the 5 time steps before the first occurrence of φ2. Here, robustness is defined as:

ρ(φ1 precedes φ2 within t
′ to t′′,x, t) = max( min

i∈Index(x)
i≤i∗

(ρ(φ2,x, i), max
j∈[i−t′′,i−t′]

(ρ(φ1,x, j))))

Operators of SF-DSL, whose quantitative semantics were not yet considered in the
definitions described in 3.1, are the ranked quantifiers. They allow relating simulation results
depending on parameter values of operators, for example, the smaller/larger a parameter’s
value vi in v ={v1,...,vn} is, the smaller/larger the result fi of applying operator f to vi

and the simulation output is. For example, vi could be a lag and f the calculation of an
autocorrelation where the lag is applied. The calculation of the robustness values in all cases
is shown in Table 1.

Table 1 Formulas for calculating the robustness of the ranked quantifiers.

... the larger fi ... the smaller fi

the larger vi ... min
i,j∈Index(v);j=i+1

(fj − fi) − max
i,j∈Index(v);j=i+1

(fj − fi)

the smaller vi ... min
i,j∈Index(v);j=i+1

(fi − fj) − max
i,j∈Index(v);j=i+1

(fi − fj)

The calculation of robustness values if a time series xk is monotonically increasing/de-
creasing is handled similarly. Here, instead of the distances between the calculated values
for f, as with the ranked quantifiers (fj - fi or fi - fj), the differences between the values of
the described time series itself are used instead. In addition, if a time series is described
as strictly monotonically increasing/decreasing, the number of repeated values in the time
series is counted and set in relation to the length of the time series.

Since our goal is to calibrate models with respect to stylized facts, we require a single
metric that we can optimize. As for calibration, we are interested specifically in the
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cases where a property is violated, we define a second quantitative measure, i.e., the
penalty ψ = min(ρ(φ,x, t), 0). The penalty thus refers to the negative robustness values as
introduced by [2]. Penalties have been used, e.g., by [15] to guide optimization algorithms, or
in reinforcement learning to reduce the reward an agent receives for its action [8]. Calibration
then aims to minimize the absolute value of the penalty, which has the advantage that an
optimizer will focus on the expressions not yet fulfilled instead of further improving already
fulfilled ones. As a downside, the result of the optimization will be a parametrization that is
only weakly robust.

Contrary to the robustness definition of the and operator, we decided to calculate its
penalty not as a minimum, but as the sum of the penalties of the two sub-expressions. This
ensures that not only the lower-scoring sub-expression is taken into account in the calibration.

3.3 Normalization
When calibrating a simulation model based on stylized facts, all sub-expressions of the facts
and their respective robustness values need to be evaluated and combined. Since the range
between the observed variables over time can vary significantly, a normalization is needed
to ensure a fair treatment of each sub-expression. However, this normalization procedure
must not be based on the (minimum and maximum) values of the time series itself, as these
are influenced by the varying model parameters during the calibration process – otherwise,
the evaluation metric for the model parameters would depend on the model parameters it
evaluates. In our current implementation, we assume that the ranges of observed variables
are predefined so as to allow for normalization of distance values.

4 Case Study

To evaluate the robustness and penalty metrics, a small case study is carried out using an
application to a simple simulation model. For this purpose, the susceptible-infected-recovered
(SIR) model, implemented in the agent-based modeling language ML3 [18], is examined with
four different parameter configurations and for two stylized facts.

4.1 SIR Model & Experiment Specification
The agents in this implementation of the SIR model [17] belong to one of the three basic
types: susceptible, infected, and recovered. The model has two parameters: ri describes
the rate at which susceptible persons become infected when in contact with an infected
neighbor in their network, rr is the recovery rate. There is a transition rule from susceptible
to infected (see Listing 2) and one from infected to recovered (see Listing 3).

Listing 2 ML3 transition rule from susceptible to infected
Person
| ego.status = "susceptible"
@ r_i * ego.network.filter(alter.status = "infected").size()
-> ego.status := "infected"

Listing 3 ML3 transition rule from infected to recovered
Person
| ego.status = "infected"
@ r_r
-> ego.status := "recovered"

CVIT 2016
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The model forms a Population-based Continuous-time Markov Chain (PCTMC). There is a
total constant population of 1000. Initially, 50 people are infected, and 950 are susceptible.
The network is randomly generated using the Barabási-Albert algorithm [1]. Each person
has at least five neighbors. Each execution of the simulation model is terminated after the
200th time step. One time step in the model corresponds to one day.

4.2 Stylized Facts
All parameter configurations are evaluated on the basis of two stylized facts. Since this is
an abstract example, arbitrary stylized facts were chosen, which are influenced by the two
model parameters (rr & ri). The first stylized fact (see Listing 4) states that the number of
infected persons is expected to peak between 400 and 500 individuals.

Listing 4 Stylized fact 1: Peak of infected people
max(infected) is between 400 and 500;

The second stylized fact (see Listing 5) consists of two conjuncted sub-expressions. The
first one states that the cross-correlation between the number of infected and recovered
should be less than −0.85. The second sub-expression uses the temporal logic operator
precedes. The second sub-expression states that after the last time step at which the number
of infected has risen for at least 25 time steps in a row, the number of infected must start to
fall within the next two time steps for at least 25 time steps.

Listing 5 Stylized fact 2: Cross-correlation between susceptible and infected and temporal
relationship between increase and decrease in the number of infected
CC(susceptible, recovered) < -0.85 and (infected is growing for 25 days) precedes
(infected is falling for 25 days) within 1 to 2 days;

4.3 Results
For each parameter configuration, 100 simulation replications were carried out, and the
average time series was produced (see Figure 1). The robustness and the penalty were
calculated for the resulting average time series for both stylized facts (see Table 2). For the
second stylized fact, these values were also calculated for the two sub-expressions to illustrate
how the two metrics differ. Since all time series are bounded to the user-defined interval
between 0 and 1000 (the total population), the distances could be normalized accordingly.

Table 2 Robustness and penalty evaluation for tested parameter configurations and the stylized
facts. The sub-expressions of Stylized fact 2 are also evaluated in isolation to show the differences in
calculation between robustness and penalty. The cross-correlation comparison is referenced as e1,
the precedes expression is referenced as e2, and the conjunction of both is referenced as e1 ∧ e2.

Stylized fact 1 Stylized fact 2
ρ ψ ρ ψ

e1 e2 e1 ∧ e2 e1 e2 e1 ∧ e2

ri=0.05; rr=0.05 -0.114 -0.114 -0.043 0.707 -0.043 -0.043 0 -0.043
ri=0.05; rr=0.03 -0.222 -0.222 -0.111 0.818 -0.111 -0.111 0 -0.111
ri=0.03; rr=0.05 0.014 0 0.012 0.533 0.012 0 0 0
ri=0.01; rr=0.01 -0.114 -0.114 -0.010 -0.019 -0.019 -0.010 -0.019 -0.029
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Figure 1 Results of Simulation runs using the respective parameter configuration. ri is the rate
of infection and rr is the rate or recovery.

As can be seen in the result data, the penalty corresponds in most cases to the minimum
of zero and the robustness. However, there are also scenarios in which this does not apply,
for example, if both sub-expressions of the and operator are not satisfied. This can be seen
in the evaluation of Stylized Fact 2 with the parameter configuration ri = 0.01; rr = 0.01.
Here, both penalties of the sub-expressions are added together instead of simply taking the
minimum of the two values, as is the case when calculating robustness. The e2 sub-expression
is not evaluated as fulfilled in this parameter configuration because the slopes before and after
the peak of the infected curve are not steep enough to be classified accordingly. Therefore,
the condition is not fulfilled in the given time interval of one to two days. This is a direct
consequence of the low parameter values, which lead to a slower curve development overall.

Since parameter configuration 3 has a penalty of 0 for both stylized facts, it may be
identified as an optimum in the calibration process.

5 Conclusion

We introduced a quantification of our language, SF-DSL, a language developed to support
the specification of stylized facts. The quantification allows us to use the language not only
for validation, as we did for an economic simulation study [16, 22], but also for calibration
purposes. As a proof of concept, we applied the language and its quantitative semantics to
evaluate parameter configurations of a small epidemiological model. The quantification of
SF-DSL presents, to our knowledge, the first quantification of LTL operators with relative
time intervals. Whereas for many operators we build on earlier work on quantifying logics,
such as Forall or not, adaptations and extensions were required for some of the operators,
such as Precedes or and. To assess the possible impact on simulation studies, we plan to
apply the approach within a realistic epidemiological simulation study. This application will
give us the possibility not only to test our design decisions when creating the language, but
in particular also to analyse the accessibility of the quantitative semantics and thus overall
usability with modelers and epidemiologists alike.
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