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Abstract
We define a ⃝-normal form for wLTL-formulas over a subclass of ω-valuation monoids. We define
a deterministic algorithm for determining, for every φ ∈ ∨-t-RULTL, an equivalent ∨-t-RULTL-
formula in ⃝-normal form in time O

(
|φ|k |AP |

)
. The output formula is obtained in the form of an

array representation of its syntax tree.
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1 Introduction

Weighted logics have been introduced by Droste and Gastin in [3], where a weighted MSO
logic over semirings for finite words has been defined and has been proposed as a logical
formalism that can describe a system’s quantitative behavior. In [7] a weighted LTL over
infinite words, with weights over subclasses of product ω-valuation monoids (the definition
of product ω-valuation monoids was introduced in [5]), was presented. That logic was
proposed in [8] as a specification language for modeling properties related to the way that
quantitative characteristics of a system evolve over time. In fact, for any element k of the
weight domain different from the neutral elements of the sum and product operations of the
underlying weight structure, the semantics of formulas of a syntactic fragment of the logic
express a notion of weighted safety with respect to threshold k. Further, these fragments
of k-safe weighted LTL formulas are included to a larger syntactic fragment of the logic
whose formulas can be effectively translated to equivalent weighted Büchi automata (wBa for
short)[7], [8]. This result is of special interest, since for a family of the product ω-valuation
monoids employed in [8], the quantitative language equivalence problem of wBa was proved
decidable by generalizing a result of [2]. For the, proposed in [7], translation of weighted LTL
formulas to wBa to be effective, a reduction of formulas with respect to the next operators,
and the conjunction operators is necessary. The reduction with respect to the next operator
produces a formula that is equivalent to the original one and also has the property that no
until operator appears in the scope of a next operator in the formula.

Motivated by the need to study the complexity of translating weighted LTL formulas to
wBa, and eventually the complexity of decision procedures that incorporate this translation
(see for example [8]), we deal with the problem of defining a next normal form for weighted
LTL formulas, and that of efficiently computing, given a weighted LTL formula, an equivalent
one in next normal form. More specifically, in Section 4 we define that a weighted LTL

formula is in next normal form if no operator different from the negation and the next
operator appears in the scope of a next operator in the formula. We identify a quantitative
necessary and sufficient condition that weighted LTL formulas must satisfy to be in next
normal form. The condition requires that the sum of properly defined distances between
specific operators in the syntax tree of the formula is equal to zero. These distances can
be computed in time O

(
|φ|k + |AP |

)
. We further present, in Section 5, a deterministic
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recursive algorithm that given the array representation of the syntax tree of a formula of a
fragment of our logic terminates and outputs the array representation of the syntax tree of an
equivalent formula in next normal form. We prove that the time complexity of the algorithm
is O

(
|φ|k |AP |

)
. The results presented in this paper are part of an ongoing work that studies

the complexity of translating weighted LTL formulas to wBa via the construction presented
in [7]. In this work, we use as weight domains for our weighted LTL, elements of a subclass
of ω-valuation monoids, that capture the properties of a family of the product-ω-valuation
monoids employed in [8]. We introduce the definition of the weight structure in Section 3.

2 Preliminaries

Let A be an alphabet, i.e., a finite non-empty set. As usually, we denote by A∗ the set of
all finite words over A and we let A+ = A∗ \{ε} , where ε is the empty word. A finite word
over A shall be denoted by w = w (0)w (1) . . . w (n) where w (i) ∈ A (0 ≤ i ≤ n). The prefix
relation on A∗ is a partial order defined in the following way: for every u,w ∈ A∗, u ≤pref w

iff there exists v ∈ A∗ such that w = uv. A set B ⊆ A∗ is called prefix-closed if w ∈ B implies
u ∈ B for every u ≤pref w. For every w ∈ A∗ we shall denote by |w| the number of letters of
w. The set of all infinite sequences with elements in A, i.e., the set of all infinite words over
A, is denoted by Aω. An infinite word w over A is also denoted by w = w (0)w (1) . . . where
w (i) ∈ A for all i ≥ 0.

We shall denote by N the set of non-negative integers, and by N+ the set N\ {0} . An
infinite ranked alphabet (see [9]) is a pair (Σ, rkΣ) (simply denoted by Σ) where Σ is a possibly
infinite set and rkΣ : Σ −→ N such that the set {n ∈ N | ∃σ ∈ Σ, rkΣ (σ) = n} is finite. We
set Σk = {σ ∈ Σ | rkΣ (σ) = k} for every k ≥ 0. A finite tree t over Σ is defined as a partial
mapping t : N∗

+ −→ Σ such that the domain of t, dom (t) , is a non-empty prefix closed set,
and for every p of the domain of t, if t(p) ∈ Σk, k ≥ 0, then for every i ∈ N+, pi ∈ dom (t)
iff 1 ≤ i ≤ k. The set of positions of t, Pos (t) , is defined to be the domain of t. We will
call ε the root of t, and we shall denote by TΣ the set of all finite trees over Σ. Let now
t ∈ TΣ, and p, p′ ∈ Pos (t) such that p ≤pref p

′. The path of t from p to p′ is the sequence
p, pp′ (|p|) , pp′ (|p|) p′ (|p|+ 1) , . . . , p′of elements of Pos (t). The length of the path from p to
p′ is defined to be equal to |p′| − |p| . For every t ∈ TΣ and p ∈ Pos(t), the subtree t|p of t
at p is defined as follows: Pos(t|p) =

{
u ∈ N∗

+ | pu ∈ Pos(t)
}

, and t|p(u) = t(pu) for every
u ∈ Pos(t|p). Next, for every t, t′ ∈ TΣ, and every p ∈ Pos (t) , we let t [t′]|p denote the tree
obtained by t if we substitute in t the subtree t|p by t′ at position p.

Let now (Σ, rkΣ) be an infinite ranked alphabet with max (rkΣ (σ) | σ ∈ Σ) = 2. Then,
every element of TΣ will be called a binary tree. Let t be a binary tree over (Σ, rkΣ) . For
every p ∈ Pos (t) such that t (p) ∈ Σ2, we shall call p1, p2 ∈ Pos (t) the left, and right child of
p, respectively. Similarly, for every p ∈ Pos (t) such that t (p) ∈ Σ1, we shall call p1 ∈ Pos (t)
the left child of p, and we shall say that p has no right child. We say that every p ∈ Pos (t),
such that t (p) ∈ Σ0, has no children. Finally, for every p ∈ Pos (t) \ {ε} the parent of p is
defined to be p (0) . . . p (|p| − 2) ∈ Pos (t) . The root ε of t has no parent.

We encode a binary tree t over (Σ, rkΣ) using a four-row array [1] in the following way.
The size of each row is equal to the number of positions of the binary tree. The i-indexed
positions of the four rows will be used to represent position i of the binary tree (assuming
that we have enumerated, starting from 0, the positions of the tree in a top-down, and from
left to right way). The data that is stored on the i-indexed position of the first row, is the
label of the tree-position i (i.e. the element of Σ assigned by t to tree-position i). The data



E. Mandrali XX:3

that is stored on the i-indexed position of the second row (resp. the third, the fourth row),
is the array-position of the left child (resp. the right child, the parent) of tree-position i. For
every 0 ≤ i ≤ Card (Pos (t))− 1 (where Card (C) stands for the number of elements of a set
C) we shall denote the fact that position i in the tree has no left child (resp. no right child,
no parent) by writing NULL in the i-indexed position of the corresponding row of the array.
Given an array B we shall denote by |B| its size, i.e., the number of its positions. In the
sequel, we use binary trees over infinite ranked alphabets to represent the syntax of weighted
LTL formulas.

3 Totally generalized (ω,≤)-valuation monoids

Let C,K be sets. We denote by B ⊆fin C the fact that B is a finite subset of C and we
let (Cfin)ω =

⋃
B⊆finC

Bω. An index set I of C is a subset of C. A family of elements of K

over the index set I, denoted by (ki)i∈I , is a mapping f from I to K where ki = f (i) for
all i ∈ I. A monoid (K,+,0) is an algebraic structure equipped with a non-empty set K
and an associative additive operation + with a zero element 0, i.e., 0 + k = k + 0 = k for
every k ∈ K. The monoid K is called commutative if + is commutative. An ω-valuation
function over K is a function V alω : (Kfin)ω → K such that for every C ∈ Kfin, and
every w ∈ Cω, V alω (w) ∈ C. Let K be a commutative monoid. K is called additively
idempotent (or simply idempotent), if k + k = k for every k ∈ K. We recall (cf. [6]) that
idempotency gives rise to a natural partial order in K defined in the following way. Let
k, k′ ∈ K, then k ≤ k′ iff k′ = k′ + k. Equivalently, it holds k ≤ k′ iff k′ = k′′ + k for
some k′′ ∈ K (cf. [4]). Clearly, 0 ≤k for every k ∈ K. We shall call the natural order
of K a total order, if k ≤ k′, or k′ ≤ k for all k, k′ ∈ K. A commutative idempotent
monoid K will be called ordered if the natural order induced by idempotency is a total
order. We recall that a monoid (K,+,0) is called complete if it is equipped, for every
index set I, with an infinitary sum operation

∑
I : KI → K such that for every family

(ki)i∈I of elements of K we have
∑

i∈∅
ki = 0,

∑
i∈{j}

ki = kj ,
∑

i∈{j,l}
ki = kj + kl for j ̸= l, and

∑
j∈J

(∑
i∈Ij

ki

)
=
∑
i∈I

ki, if
⋃

j∈J Ij = I and Ij

⋂
Ij′ = ∅ for j ̸= j′. We let now (K,+,0) be a

commutative idempotent ordered monoid with a maximum element denoted by 1, i.e., k ≤ 1
for all k ∈ K. For every family (ki)i∈I of elements of K, we denote by sup

i∈I
(ki) , and inf

i∈I
(ki) ,

the supremum and infimum respectively of (ki)i∈I with respect to the natural order induced
by idempotency. Clearly, every commutative idempotent ordered monoid (K,+,0) with
a maximum element is a complete monoid with

∑
(ki)i∈I = sup (ki)i∈I . We shall denote

such a structure by (K, sup,0) . We present now the definition of (ω,≤)-valuation monoids,
and totally generalized-(ω,≤)-valuation monoids. In fact, the definition of (ω,≤)-valuation
monoids describes a subclass of ω-valuation monoids introduced in [5].

▶ Definition 1. Let (K,+,0) be a commutative idempotent ordered monoid with a maximum
element. An (ω,≤)-valuation monoid (K, sup, V alω,0) is the complete monoid (K, sup,0)
equipped with an ω-valuation function V alω : (Kfin)ω → K such that V alω (ki)i∈N = 0
whenever ki = 0 for some i ≥ 0. A totally generalized (ω,≤)-valuation monoid (for short TG-
(ω,≤)-valuation monoid) (K, sup, V alω,0) is an (ω,≤)-valuation monoid (K, sup, V alω,0)
further equipped with the following properties: V alω (1ω) = 1, and for every L ⊆fin K, finite
index sets Ij (j ≥ 0) such that for all j ≥ 0, it holds kij

∈ L\ {0,1} for all ij ∈ Ij , or kij
∈

{0,1} for all ij ∈ Ij , we have V alω
(

supij∈Ij

(
kij

))
j∈N

= sup(ij)j∈I0×I1×...

(
V alω

(
kij

)
j∈N

)
.
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We note that for every (ω,≤)-valuation monoid, the structure (K, sup, inf, V alω,0,1) is
a totally generalized product-ω-valuation monoid (for short TGP-ω-valuation monoid). For
the definition of TGP-ω-valuation monoids we refer the reader to Definition 6 in [8]. As in
[8], in the rest of this paper we will consider TG-(ω,≤)-valuation monoids (K, sup, V alω,0)
that further satisfy the following properties that state variants of neutrality of 1 with respect
to V alω, and a notion of monotononicity of V alω. More specifically the following hold.
For all k, ki ∈ K (i ≥ 1) it holds V alω (1,k1, k2, k3, . . .) = V alω (ki)i≥1 , (Property 2), and
k = V alω (k,1,1,1, . . .) (Property 3). Moreover, for all k ∈ K, and all (ki)i≥0 ∈ (Kfin)ω

with ki ≥ k (i ≥ 0) it holds V alω (k0, k1, k2, . . .) ≥ k (Property 4).
In the rest of this work, we will call TG-(ω,≤)-valuation monoids that satisfy properties

2, 3, and 4 simply TG-(ω,≤)-valuation monoids. Throughout the rest of the paper K will
stand for a TG-(ω,≤)-valuation monoid (K, sup, V alω,0).

▶ Example 2. We let K2 =
(
Q, sup, limsup,−∞

)
where Q = Q ∪ {∞,−∞}, ∞ is the

maximum element, and limsup is an ω-valuation function from
(
Qfin

)ω to Q defined in the
following way: If there exists i ≥ 0 with di = −∞, then limsup

(
(di)i≥0

)
= −∞. If for

all i ≥ 0, di = ∞, then limsup
(

(di)i≥0

)
= ∞. If dj ̸= −∞ for all j ≥ 0, and there exist

infinitely many i ≥ 0 with di ̸= ∞, then limsup
(

(di)i≥0

)
= inf

i≥0
(sup {dk | k ≥ i, dk ̸=∞}).

Otherwise, limsup
(

(di)i≥0

)
= sup {di | i ≥ 0 with di ̸=∞}. K2 is a TG-(ω,≤)-valuation

monoid.

4 Weighted LTL over TG-(ω,≤)-valuation monoids

Let AP be a finite set of atomic propositions. As in [8], the syntax of the weighted LTL

over AP and K is given by the grammar

φ ::= k | a | ¬a | φ ∨ φ | φ ∧ φ | ⃝φ | φUφ | □φ

where k ∈ K, and a ∈ AP. We shall denote by wLTL the class of all weighted LTL formulas
over AP and K.

▶ Definition 3. The semantics of formulas φ ∈ wLTL are represented as infinitary series ∥φ∥ :
(P (AP ))ω−→ K which are inductively defined in the following way: For every w ∈ (P (AP ))ω we
let

- ∥k∥ (w) = k

- ∥a∥ (w) =
{

1 if a ∈ w (0)
0 otherwise - ∥¬a∥ (w) =

{
1 if a /∈ w (0)
0 otherwise

- ∥φ ∨ ψ∥ (w) = sup (∥φ∥ (w) , ∥ψ∥ (w)) - ∥φ ∧ ψ∥ (w) = inf (∥φ∥ (w) , ∥ψ∥ (w))
- ∥⃝φ∥ (w) = ∥φ∥ (w (1)w (2) . . . ) - ∥□φ∥ (w) = V alω (∥φ∥ (w (i)w (i+ 1) . . .))i≥0
- ∥φUψ∥ (w) =
supi≥0 (V alω (∥φ∥ (w) , . . . , ∥φ∥ (w (i− 1)w (i) . . .) , ∥ψ∥ (w (i)w (i+ 1) . . .) ,1,1, . . .))

The semantics of a wLTL-formula φ over a TG-(ω,≤)-valuation monoid (K, sup, V alω,0)
coincides with the semantics of φ over the TGP-ω-valuation monoid (K, sup, inf, V alω,0,1).
We recall that for φ,ψ ∈ wLTL, we say that φ,ψ are equivalent, and we denote it by φ ≡ ψ,
if ∥φ∥ (w) = ∥ψ∥ (w) for every w ∈ (P (AP ))ω

.

Let φ ∈ wLTL. We let the size of φ, denoted by |φ| , be the number of operators that
appear in φ, and OP (φ) be the set of operators that appear in φ. We denote by nest(φ) the
maximal number of nesting operators that appear in φ, and by Cl (φ), the closure of φ, i.e.,
the set that contains φ and all the subformulas of φ.
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Moreover, if φ /∈ AP ∪ K, we define EXOP (φ) ∈ {∧,∨,¬,□, U,⃝, null} to be the
most external operator in φ, i.e., the unique operator with the property that it has an
appearance in φ that is not in the scope of any other operator in φ. Otherwise, we let
EXOP (φ) = null. We also define Left (φ) , Right (φ) ∈ Cl (φ) ∪ {Empty} , by pointing
out the following cases: If φ ∈ K ∪ AP, then Left (φ) = Right (φ) = Empty. If φ = ¬a
with a ∈ AP, then Left (φ) = a, and Right (φ) = Empty. If φ =⃝ψ (resp. φ = □ψ) with
ψ ∈ wLTL, then Left (φ) = ψ, Right (φ) = Empty. Finally, if φ = ψ ∧ ξ (resp. φ = ψ ∨ ξ,
φ = ψUξ), with ψ, ξ ∈ wLTL, then Left (φ) = ψ,Right (φ) = ξ.

As in the case of classical LTL-formulas, we can represent every wLTL-formula φ by its
syntax tree if we consider the infinite ranked alphabet {∧,∨,¬,□, U,⃝} ∪K ∪AP , where
the binary operators ∧,∨, U are of rank 2, the unary operators ⃝,¬,□ are of rank 1, and
the elements of K ∪AP are of rank 0. We will denote the syntax tree of a wLTL-formula
φ by T (φ). Syntax trees of wLTL-formulas are binary trees, and as such are amenable
to an array encoding as described in Section 2. For a weighted LTL formula φ, we will
denote by Array (φ) the array representation of T (φ). We can determine an algorithm that
given a wLTL-formula as input string, and AP as input array, outputs Array (φ) in time
O
(
|φ|3 + |AP |

)
.

Let now φ ∈ wLTL, and T (φ) be the corresponding syntax tree. For every ∗ ∈
{U,∧,∨,□,¬,⃝} , we define dist (T (φ) , ∗) as follows: If ∗ ∈ OP (φ) \ {EXOP (φ)} , then
we let dist (T (φ) , ∗) be the maximum length among the lengths of all paths of T (φ) that
lead from the root to a different from the root position labeled by a ∗-operator. Otherwise, we
let dist (T (φ) , ∗) = 0. Now, for every φ ∈ wLTL, and every ∗ ∈ {U,∧,∨,□} , we define the
(⃝, ∗)-maximal distance in φ, and denote it by mdist (φ,⃝, ∗) , in the following way: if ⃝ ∈
OP (φ) , then mdist (φ,⃝, ∗) = max {dist (T (ψ) , ∗) | ψ ∈ Cl (φ) with EXOP (ψ) =⃝},
otherwise mdist (φ,⃝, ∗) = 0. With standard arguments we can verify that for every
φ ∈ wLTL, and every ∗ ∈ {∧,∨, U,□} , mdist (φ,⃝, ∗) = 0 iff no ∗ operator appears in the
scope of a ⃝-operator in φ.

▶ Definition 4. Let φ ∈ wLTL. We say that φ is in ⃝-normal form if no operator different
from ⃝, and ¬ appears in the scope of a ⃝-operator in φ.

▶ Proposition 5. Let φ ∈ wLTL. Then,

φ is in ⃝ -normal form iff
∑

∗∈{∧,∨,U,□}

mdist (φ,⃝, ∗) = 0.

Let φ,ψ, ξ ∈ wLTL such that φ = ⃝ (ψ ∗ ξ) where ∗ ∈ {∧,∨, U} (resp. φ = ⃝ (□ψ) ,
φ =⃝k where k ∈ K), we shall denote by φ≡1 the formula (⃝ψ) ∗ (⃝ξ) (resp. the formula
□ (⃝ψ) , the formula k). It holds φ ≡ φ≡1 . For every wLTL-formula φ we can effectively
construct an equivalent one in ⃝-normal form by applying the aforementioned equivalences.

▶ Example 6. For φ =⃝ ((3 ∧ (aUb))U (2 ∧ (⃝c))) ∈ wLTL over K2 and AP = {a, b, c},
it holds mdist (φ,⃝, U) = max {dist (T (φ) , U) , dist (T (⃝c) , U)} = max {3, 0} = 3. φ is
not in ⃝-normal form. For ψ = (3 ∧ ((⃝a)U (⃝b)))U (2 ∧ (⃝ (⃝c))) it holds that ψ ≡ φ,
and ψ is in ⃝-normal form. Moreover, for every ∗ ∈ {∧,∨, U,□}, we have mdist (ψ,⃝, ∗)
= max {dist (T (⃝a) , ∗) , dist (T (⃝b) , ∗) , dist (T (⃝ (⃝c)) , ∗) , dist (T (⃝c) , ∗)} = 0.

The syntactic boolean fragment of wLTL, denoted by bLTL, is given by the grammar
φ ::= 0 | 1 | a | ¬a | φ ∨ φ | φ ∧ φ | ⃝φ | φUφ | □φ. A wLTL-formula of the form
k ∧ φ, where k ∈ K\ {0,1} , and φ ∈ bLTL will be called a monomial over AP and K.
We shall denote by mLTL the class of all monomials over AP and K. We let the class of
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restricted LTL-step formulas over AP and K, denoted by r-stLTL, be the least class of
wLTL-formulas inductively defined in the following way: mLTL ⊆ r-stLTL, and if φ,ψ ∈ r-
stLTL, then φ ∨ ψ ∈ r-stLTL. We note that every φ ∈ r-stLTL can also be defined as a
generalized disjunction of the form

∨
1≤i≤n

(ki ∧ φi) where ki ∈ K\ {0,1} and φi ∈ bLTL for

every 1 ≤ i ≤ n (see [8]).

▶ Definition 7. [8] We let the fragment of ∨-totally restricted U-nesting LTL-formulas over AP
and K, denoted by ∨-t-RULTL, be the least class of formulas of wLTL which is inductively defined
in the following way

- K
⋃
bLTL

⋃
r-stLTL ⊆ ∨-t-RULTL,

- If φ ∈ ∨-t-RULTL, then ⃝φ ∈ ∨-t-RULTL,
- If φ,ψ ∈ r-stLTL, then φUψ ∈ ∨-t-RULTL,
- If φ ∈ r-stLTL, then □φ ∈ ∨-t-RULTL,
- If φ,ψ ∈ r-stLTL, or φ = λUξ, ψ = □ζ with λ, ξ, ζ ∈ r-stLTL, then φ∨ψ,ψ∨φ ∈ ∨-t-RULTL,
- If φ ∈ bLTL, and ψ ∈ r-stLTL, or ψ = λUξ, or ψ = □ζ with λ, ξ, ζ ∈ r-stLTL, then
φ ∧ ψ,ψ ∧ φ ∈ ∨-t-RULTL.

The formulas φ, ψ of Example 6 are ∨-t-RULTL-formulas.

5 An Algorithm for Reducing wLTL-formulas to ⃝- normal form

In this section, we define a deterministic recursive algorithm that takes as an input the
array representation of a formula φ ∈ ∨-t-RULTL, and array AP of atomic propositions,
and outputs the array representation of an equivalent to φ, ∨-t-RULTL formula φ⃝-re in
⃝-normal form.

▶ Definition 8. (a) Let φ ∈ wLTL, and ψ ∈ Cl (φ) such that ψ =⃝ (ξ ∗ ζ), or ψ =⃝ (□ξ) ,
or ψ =⃝k where ∗ ∈ {∧,∨, U}, ξ, ζ ∈ wLTL, and k ∈ K. We let [φ←− ψ≡1 ] denote the set
of wLTL-formulas defined in the following way:

[φ←− ψ≡1 ] =
{
φ̃ ∈ wLTL | ∃p ∈ Pos (T (φ)) such that

T (φ)|p = T (ψ) , and T (φ̃) = T (φ) [T (ψ≡1)]|p

}
.

(b) We define the reduction relation (wLTL,≡1) as follows: for every (φ, φ̃) ∈ wLTL×
wLTL, (φ, φ̃) ∈≡1iff φ̃ ∈ [φ←− ψ≡1 ] for some ψ ∈ Cl (φ) such that ψ = ⃝ (ξ ∗ ζ) , or
ψ =⃝ (□ξ) , or ψ =⃝k where ∗ ∈ {∧,∨, U} , ξ, ζ ∈ wLTL, and k ∈ K.

We let ≡R
1 (resp. ∗≡1) denote the reflexive (resp. transitive and reflexive) closure of ≡1 .

▶ Example 9 (continued). Let φ = ⃝ ((3 ∧ (aUb))U (2 ∧ (⃝c))) ∈ wLTL over K2 and
AP = {a, b, c} . It holds [φ←− φ≡1 ] = {(⃝ (3 ∧ (aUb)))U (⃝ (2 ∧ (⃝c)))} . We set φ̃ =
(⃝ (3 ∧ (aUb)))U (⃝ (2 ∧ (⃝c))) . Then, for ψ =⃝ (2 ∧ (⃝c)) ∈ Cl (φ̃), we have [φ̃←− ψ≡1 ]
= {(⃝ (3 ∧ (aUb)))U ((⃝2) ∧ (⃝ (⃝c)))} .

▶ Lemma 10. Let K be a TG-(ω,≤)-valuation monoid and AP a finite set of atomic
propositions. For every (φ, φ̃) ∈ ∗≡1the following statements are true: (i) nest (φ) ≥ nest (φ̃) ,
(ii) for every ∗ ∈ {∧,∨, U,□} , mdist (φ,⃝, ∗) ≥ mdist (φ̃,⃝, ∗) , and (iii) |φ̃| ≤ |φ|2 + |φ| .

In the sequel, in the context of our pseudocode, for φ,ψ ∈ wLTL, the assignment φ←− ψ
stands for the definition of Array (φ) and for setting it equal to Array (ψ). We note that
given Array (φ) (of a wLTL-formula φ), we can effectively determine Array (Left(φ)) (resp.
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Array (Right(φ))) in time cubic in |φ| , mdist (φ,⃝, ∗) (where ∗ is a binary operator, or an
always operator) in time polynomial in |φ| , and Array (⋆φ) (where ⋆ is a next, or always
operator) in time linear in |φ|. Finally, given Array (φ), Array (ψ) (of wLTL-formulas φ,ψ),
we can effectively determine Array (φ ⋆ ψ) (for a binary operator ⋆ of weighted LTL) in
time quadratic in |φ|+ |ψ|.

▶ Algorithm 1. φ⃝-re

Input: Array (φ) where φ ∈ ∨-t-RULTL, array AP
Output: Array representation of equivalent to φ formula φ⃝-re ∈ ∨-t-RULTL in

⃝-normal form
1. MaxDistSum←−

∑
∗∈{U,∧,∨,□}

mdist (φ,⃝, ∗)

2. If MaxDistSum = 0
3. If EXOP (φ) =⃝ and EXOP (Left (φ)) = null and Left (φ) /∈ AP
4. φ⃝-re ←− Left (φ)
5. else
6. φ⃝-re ←− φ
7. end if
8. else
9. If EXOP (φ) =⃝
10. If EXOP (Left (φ)) = U

11. φ⃝-re ←− (⃝ (Left (Left (φ))))⃝-re U (⃝ (Right (Left (φ))))⃝-re

12. else if EXOP (Left (φ)) = ∨
13. φ⃝-re ←− (⃝ (Left (Left (φ))))⃝-re ∨ (⃝ (Right (Left (φ))))⃝-re

14. else if EXOP (Left (φ)) = ∧
15. φ⃝-re ←− (⃝ (Left (Left (φ))))⃝-re ∧ (⃝ (Right (Left (φ))))⃝-re

16. else if EXOP (Left (φ)) = □

17. φ⃝-re ←− □
(

(⃝Left (Left (φ)))⃝-re

)
18. else if EXOP (Left (φ)) =⃝
19. φ⃝-re ←−

(
⃝
(

(Left (φ))⃝-re

))
⃝-re

20. end if
21. else if EXOP (φ) = U

22. φ⃝-re ←− (Left (φ))⃝-re U (Right (φ))⃝-re

23. else if EXOP (φ) = ∨
24. φ⃝-re ←− (Left (φ))⃝-re ∨ (Right (φ))⃝-re

25. else if EXOP (φ) = ∧
26. φ⃝-re ←− (Left (φ))⃝-re ∧ (Right (φ))⃝-re

27. else if EXOP (φ) = □

28. φ⃝-re ←− □
(

(Left (φ))⃝-re

)
29. end if
30.end if
31.return φ⃝-re

▶ Theorem 11. (i) Let φ ∈ ∨-t-RULTL. Given Array (φ), and array AP as input in
Algorithm φ⃝-re, the algorithm terminates, and outputs Array (φ⃝-re) such that φ⃝-re ∈ ∨-
t-RULTL is in ⃝-normal form, φ⃝-re ≡ φ, and (φ,φ⃝-re) ∈ ⋆≡1 .

(ii) Let φ ∈ ∨-t-RULTL. Array (φ⃝-re) can be determined in time O
(
|φ|k |AP |

)
.
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