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Abstract
We introduce BayesL, a novel logical framework for specifying, querying, and verifying the behaviour
of Bayesian networks (BNs). BayesL (pronounced “Basil”) is a structured language that allows for the
creation of queries over BNs. It facilitates versatile reasoning concerning causal and evidence-based
relationships, and permits comprehensive what-if scenario evaluations without the need for manual
modifications to the model.
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1 Introduction

Bayesian networks (BNs) are a cornerstone model in AI, enabling structured probabilistic
reasoning under uncertainty. They model conditional dependencies among random variables
using a directed acyclic graph (DAG), with each node representing a random variable and
each edge encoding a probabilistic dependency. This structure allows for the compact
representation of joint probability distributions [23] enabling efficient inference and enhanced
interpretability. BNs have become integral to numerous domains [12].

Problem statement. Despite their ubiquitous success, a central challenge remains how
to understand and validate a given BN. Especially when inferred from data, practitioners
must ask whether a BN exhibits the properties one expects and how to explain and trace its
behaviour. To this end, users require tools that go beyond computing probabilities: they
need structured ways to analyse how evidence propagates through the network, to verify
whether key dependencies and independencies hold, and to assess the model’s response to
hypothetical interventions. Constructing what-if scenarios is an essential technique in this
regard, as it allows users to evaluate the behaviour of the BN under controlled modifications
and to check whether the model conforms to the expected behaviour, without the need to
manually alter or reparameterize the network. To support these needs, our logic offers a
range of reasoning capabilities, including marginal and conditional inference, identification of
most likely outcomes, and flexible querying through non-standard comparisons. This enables
practitioners to systematically probe the behaviour of the BN across multiple dimensions.
In spite of their importance and the extensive body of work on reasoning about BNs (see
Sec. 4), BayesL is unique in providing: 1. a flexible logical language for property specification
and querying, able to ease the formulation of insightful what-if scenarios without manually
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operating on the underlying BN model; 2. a framework grounding automatic analysis via
model checking procedures that provide formal guarantees on the behaviour of BNs – ever so
crucial in the era of AI; and 3. a reasoning system that integrates Bayesian inference and
learning to construct a BN satisfying a given formal specification.

Our contribution. To address these needs, we propose a Bayesian network Logic (BayesL) –
pronounced “Basil” – a query language that allows one to specify logical properties over BNs,
through layered reasoning capabilities: graph-structure reasoning with respect to probabilistic
influence and conditional independence; flexible probabilistic inference supporting causal
and evidential reasoning; and the specification and verification of formal properties of BN
behaviour. BayesL further supports the formulation of rich what-if scenarios without requiring
manual updates to the underlying BN model, and is designed to operate even in the presence
of partially specified BNs, whether incomplete in topology or parameters: we envision future
extensions that will leverage advances in probabilistic model checking and program synthesis
[18, 19, 20, 1] to support learning and constrained synthesis of BNs that satisfy formal BayesL
constraints.
In this work-in-progress contribution, we focus on defining the expressive capabilities of
BayesL and its underlying syntax and semantics, laying the foundation for future work on
model checking algorithms, model synthesis, and tool development.

2 Background on Bayesian Networks

Figure 1 A simple BN representing dependencies between the quality of a recommendation letter,
the SAT score, the grade obtained in a course, the difficulty of that course and the intelligence of a
student, from [12]. The image includes conditional probability tables for every node in the BN.

A BN is a tuple B = (G,Θ) where G = (V,→) is a directed acyclic graph with a finite
set of vertices V . Each v ∈ V represents a random variable Xv : Ω → D taking values in
a finite domain D. We often identify v and Xv, and write X for Xv. Each edge v → w

represents the dependency of Xv on Xw. We let parents(v) = {w ∈ V | w → v} be the set
of incoming vertices to v. Each vertex v is equipped with a conditional probability table
(CPT) Θv that expresses the probability distribution of Xv in terms of its parents: for a
vertex v with parents w1, . . . wk, the function Θv : Dk+1 → [0, 1] represents the conditional
probability distribution Θv(d1, . . . dk)(d) = Pr(Xv = d | Xw1 = d1, . . . , Xwk

= dk). We then
let Θ :

⊔
v∈V D

|parents(v)|+1 → [0, 1] denote the BN CPD, where v identifies the node, and
the restriction Θv := Θ|v recovers the original Θv : D|parents(v)|+1 → [0, 1].
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▶ Example 1. Fig. 1 represents a well-known BN for the student example from [12]. This
BN encodes dependencies between five random variables: the student’s intelligence (Int), the
course difficulty (Dif), the grade (Gra), the student’s SAT score (SAT), and the quality of the
recommendation letter they obtain (Let). All of the variables except Gra are binary-valued,
and Gra is ternary-valued (i.e., grade is either high, medium or low). Fig. 1 also represents
the CPTs of each vertex representing said variables: the CPT of vertex v defines a probability
distribution which determines the evaluation of v, given some evaluation of parents(v) [23].
E.g., according to the CPT of Grade, the probability of getting a medium grade (Gra = g2)
given a difficult exam (Dif = d1) and an intelligent student (Int = i1) is 0.3. The semantics
of a BN B = (G,Θ) is thus the joint probability function that it defines [23].

A central task when working with Bayesian networks (BNs) is inference, that is, computing
the probability of one or more random variables given some known evidence about other
variables in the network. Several core types of inference are typically considered (and
supported by BayesL):

Marginal inference. Compute the probability of a variable by summing out all other
variables from the joint distribution. This provides an overall belief about the variable
without conditioning on evidence. E.g., P(Let = l1).
Conditional inference. Compute the probability of a variable given known evidence
about other variables in the network. This is the most common form of query used in
diagnostic, predictive, or explanatory reasoning [12]. E.g., P(Let=l1 | Gra=g1, Dif=d1).
Marginal Maximum A Posteriori. A cornerstone operator in BN inference, this
query finds the most probable assignment of a subset of variables given evidence. This
task is often used in decision-making or classification settings where one seeks the most
likely explanation for observations with respect to specific variables.
MPE (Most Probable Explanation). This query finds the most probable complete
assignment to all variables in the network, given evidence. This is used when a fully
specified scenario or explanation is needed based on the available evidence.

3 BayesL: a Bayesian network Logic

3.1 BayesL Queries
Before giving the formal syntax and semantics, we illustrate BayesL via some example queries
for the BN in Fig. 1. These examples illustrate how BayesL supports querying a BN at
multiple levels (incl. non-standard ones):

1. Evidential reasoning. Given that the Letter is weak, how likely is it that the course
was difficult?

P(Dif = d1 | Let = l0)

2. Causal reasoning with disjunction. How likely is a strong recommendation Letter
because of a high SAT score or a high Grade?

P(Let = l1 | SAT = s1 ∨ Gra = g1)

3. Non-standard comparison. What is the probability that the student obtains a Grade
lower than high or that the course was easy?

P(Gra < g1 ∨ Dif = d0)
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4. Boolean combination & threshold checking. Is it true that the probability of a
strong Letter given a high Grade is at least 0.8 and that Intelligence and Letter are
independent given Grade?

P(Let = l1 | Gra = g1) ≥ 0.8 ∧ IDP(Int, Let | Gra)

5. What-if/CPT update. After updating the probability of a high Grade given high
Intelligence and a difficult course to 0.9, does the probability of a strong Letter improve
beyond 0.7?

P(Let = l1 | Gra = g1) ≥ 0.7 [Gra = g1 | Int = i1, Dif = d1 7→ 0.9]

6. Marginal Maximum A Posteriori query. What is the most probable assignment to
Intelligence and SAT given a strong Letter?

MAP(Int, SAT | Let = l1)

7. Most Probable Explanation query. What is the most probable complete explanation
for the observed strong Letter?

MPE(Let = l1)
3.2 BayesL Syntax
Atoms. At the base of BayesL syntax are atomic “events”, i.e., formulae of the form
X ▷◁ x, where X ∈ V is a single variable, x ∈ D is an assignment on that variable, and
▷◁ ∈ {<,≤,=,≥, >} denotes a comparison operator (that must be allowed) on the value
domain D. Atomic formulae can be combined via Boolean connectives to form non-standard
queries, enabling logical expressions such as (X1 ≤ x1) ∧ (X2 = x2). Where convenient, we
also use the notation X = (X1, . . . , Xk) and x = (x1, . . . , xk) to denote ordered vectors of
variables and corresponding values.

Layer 1: Probabilistic inference. Layer 1 supports standard probabilistic reasoning tasks.
The construct P(α | α) denotes the standard conditional probability between two (Boolean)
formulae in Atoms. Marginal queries are treated as a special case with omitted condition,
i.e., P(α) denotes the marginal probability of α. This layer also supports marginal maximum
a posteriori (MAP) – finds the most probable assignment of a subset of variables given
evidence – and most probable explanation (MPE) inference – finds the most probable complete
assignment to all variables in the network, given evidence. Specifically, MAP(X | α) returns
the set of assignments to X that maximize the conditional probability Pr(X = x | α), while
MPE(α) returns the set of full assignments to non-evidence variables in α that maximize that
probability. To support hypothetical reasoning, Layer 1 includes a local CPT update operator
ϕ [X = x | E = e 7→ q], which allows evaluating how probabilities change under modifications
to specific entries in the BN’s conditional probability tables. This operator updates the entry
for X = x given E = e to q, and renormalizes the remaining row values accordingly. When
concatenating multiple of these operators, precedence is crucial to guarantee coherent updates
on CPTs: e.g., if the same field of a CPT is updated multiple times, then the innermost
update will overwrite the others. Here, we fix X to be a single variable and E a vector
of its parents. Each Layer 1 formula evaluates to either a probability value in [0, 1] – for
P(·) and update formulae – or a set of assignments – for MAP and MPE queries. Together,
these constructs provide a rich and compositional language for expressing both standard and
non-standard probabilistic queries.

Layer 2: Probabilistic constraints. Layer 2 enables reasoning about probabilistic
assertions and logical combinations thereof. The main construct ϕ ▷◁ p compares the result
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of a Layer 1 query against a threshold p ∈ [0, 1], using any standard comparison operator
▷◁. This layer also includes Boolean connectives for forming composite queries, as well as
the same CPT update operator used in Layer 1, now lifted to allow evaluating the impact
of updates on formulae of this layer: ψ [X = x | E = e 7→ q] expresses the update of the ψ
formula via [X = x | E = e 7→ q] before its evaluation.

Layer 3: Structural reasoning. Layer 3 captures structural properties of the BN,
independent of parameter values (i.e., only considering the graph structure G). Given a set
of variables E, we say that an active trail between two nodes X and Y exists if there is a
path π between X and Y in G such that every triple along π satisfies the following [12]:

For every chain or fork structure A→ B → C or A← B → C, the node B is not in E,
For every v-structure A→ B ← C, either B ∈ E or some descendant of B is in E.

If no such trail exists, then X and Y are d-separated given E, i.e., structurally conditionally
independent in all compatible distributions. The formula INFL(X,Y | E) holds if there exists
an active trail from X to Y given E, indicating possible influence propagation. Conversely,
IDP(X,Y | E) holds if X and Y are d-separated given E. As in the other layers, structural
formulae support Boolean combinations through negation and conjunction.

Atoms: α ::= X ▷◁ x | ¬α | α ∧ α with ▷◁ ∈ {<,≤,=,≥, >}
Layer 1: ϕ ::= P(α | α) ϕ′ ::= ϕ [X = x | E = e 7→ q] |MAP(X | α) |MPE(α)
Layer 2: ψ ::= ϕ ▷◁ p | ψ [X = x | E = e 7→ q] | ¬ψ | ψ ∧ ψ
Layer 3: γ ::= INFL(X,Y | E) | IDP(X,Y | E) | ¬γ | γ ∧ γ | ψ ∧ γ

3.3 BayesL Semantics
Atoms semantics. Formulae in the Atoms layer are evaluated over full assignments a ∈ DV ,
which we interpret as functions a : V → D assigning a value to each variable, and a BN B.
The semantics JαKB(a) ∈ {0, 1} is defined recursively as follows:

JX ▷◁ xKB(a) = 1 iff a(X) ▷◁ x
J¬αKB(a) = 1 iff JαKB(a) = 0

Jα1 ∧ α2KB(a) = 1 iff Jα1KB(a) = 1 and Jα2KB(a) = 1

We treat atoms as Boolean-valued predicates over assignments. This semantics supports
arbitrary comparison operators ▷◁ ∈ {<,≤,=,≥, >}, and thus accommodates non-standard
comparisons such as inequalities.

Layer 1 semantics. Formulae in Layer 1 are evaluated over a BN B = (G,Θ) and return
either a probability in [0, 1] or a set of assignments (for MAP and MPE queries). Let PrB(a)
denote the joint probability of a full assignment a ∈ DV under B, computed via the standard
BN factorization [12]:

Pr
B

(a) =
∏
v∈V

Θv

(
a(parents(v))

)(
a(v)

)
The semantics of Layer 1 is thus defined as follows:

JP(α)KB =
∑

a∈DV

JαKB(a) · Pr
B

(a)

JP(α1 | α2)KB = JP(α1 ∧ α2)KB

JP(α2)KB
with JP(α2)KB > 0

JMAP(X | α)KB = argmax
x∈D|X|

Pr
B

(X = x | α)
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JMPE(α)KB = argmax
v∈D|V \E|

Pr
B

(V \ E = v | α)

where V \ E refers to an ordered vector of the variables in V \ E, with v ∈ D|V \E| denoting
corresponding assignments. Here, E denotes the vector of variables constrained in the
evidence formula α.

CPT updates. The update expression ϕ [X = x | E = e 7→ q] evaluates the Layer 1 formula
ϕ over the updated BN B[q/(X = x | E = e)] = (G,Θ′), where:

Θ′
v = Θv for all v ̸= X

Θ′
X(e)(x′) =

q if x′ = x

ΘX(e)(x′) · 1− q
1−ΘX(e)(x) otherwise

This guarantees that the modified row Θ′
X(e) remains a valid distribution over D.

Layer 2 semantics. Formulae in Layer 2 are evaluated over a BN B = (G,Θ) and return
Boolean values. They extend Layer 1 with threshold comparisons, logical combinations, and
perform CPT updates. With Booleans resolved as usual, we let semantics of ψ-formulae be:

Jϕ ▷◁ pKB = 1 iff JϕKB ▷◁ p; Jψ[X = x | E = e 7→ q]KB = JψKB[q/(X=x|E=e)]

Layer 3 semantics. Formulae in Layer 3 express properties of the BN’s structure and are
evaluated solely on the graph G: i.e., they ignore Θ. We define:

JINFL(X,Y | E)KB = 1 iff there exists an active trail from X to Y given E in G

JIDP(X,Y | E)KB = 1 iff X and Y are d-separated given E in G

4 Related work
Several frameworks have been developed to facilitate reasoning on (models similar to) BNs:
1. Frameworks that allow reasoning on BNs: [9, 10, 2, 5, 7, 3, 15, 14, 17, 25, 4, 24];
2. Model checking techniques for reasoning on BNs or similar models: [23, 18, 19, 20].

4.1 Tools and Frameworks for Bayesian Reasoning
Bayesian reasoning and channels: [10] offers a language for describing Bayesian phe-
nomena in terms of programming concepts – like channel and predicate transformation –
modelling inference as a calculus of string diagrams. Based on these semantics, [9] proposes a
new algorithm for exact Bayesian inference. However, these works do not offer infrastructure
taylored towards automatic verification of BNs’ formal properties via model checking.
Bayesian Logic Programs (BLPs): BLPs combine BNs with definite clause logic, estab-
lishing a one-to-one mapping between ground atoms and random variables [11]: this allows for
the representation of objects and relations, overcoming some limitations of propositional logic.
However, BLPs primarily focus on the integration of logic programming with probabilistic
reasoning: BayesL aims to provide verification capabilities and expressivity while remaining
at the level of the BN for property specification, giving practitioners a method to query the
BN model directly and avoiding lower-level querying on an intermediate translation model.
Probabilistic Soft Logic (PSL): PSL combines first-order logic with probabilistic graphical
models [2] and supports efficient inference through convex optimization. However, PSL is
focussed on modelling rich, structured data, esp. via the definition of hinge-loss Markov
random fields and does not provide infrastructure for formal verification of BN properties.
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CLP(BN): Constraint Logic Programming for Bayesian Networks (CLP(BN)) expresses
BNs through the constraint logic programming framework [5]. It addresses capturing of
probabilistic data using logic-based representations. CLP(BN) thus constitutes an extension
of logic programming focused on defining joint probability distributions, and does not address
verification of formal properties of BNs.
GUIs/APIs: Tools like GeNIe/SMILE [7] and Bayes Server [3] provide graphical interfaces
and APIs for BN modeling and inference. These tools support various functionalities,
including learning, inference, and visualization. However, they lack capabilities for formal
specification and verification of BN behaviour.
BNMonitor: The bnmonitor [15] R package allows for sensitivity and robustness analysis
in BNs, and assessment of the impact of changes in the network structure or parameters.
However, it does not provide a logical language for specifying and verifying formal properties.
Multi-Entity Bayesian Networks (MEBN): MEBN combines BNs with first-order logic
to represent complex domains involving multiple entities and relationships [14]. While MEBN
enhances the expressiveness of BNs, it adopts a proof-theoretial approach and focuses on
knowledge representation, rather than on formal specification and automatic verification
oriented towards model checking.
OpenBUGS and Bambi: Tools like OpenBUGS [17] and Bambi [25] facilitate Bayesian
analysis using (probabilistic) programming. They allow for model specification and inference
but do not offer mechanisms for formal verification of BN properties.
ShinyBN: ShinyBN is an R/Shiny application that provides an interactive interface for
BN modeling and inference [4]. While it enhances usability, it does not support formal
specification and verification.
BNLearn: bnlearn [24] is an R package for learning the graphical structure of BNs,
estimating their parameters and performing probabilistic and causal inference. In spite of
the extensive feature set, it does not provide a logical language for formal verification.

4.2 Probabilistic Model Checking Approaches
A model checking approach: Salmani and Katoen [23] present a method that translates
BNs into tree-like Markov chains, enabling inference through reachability probabilities. This
methodology aims to levereage probabilistic model checking techniques and established
tooling, e.g., Storm [6] and Prism [13] model checkers. While this approach allows for formal
verification, it requires the transformation of BNs into different structures and property
specification is done at the level of the underlying Markov structure (with e.g., PLTL [21] and
PCTL [8]). BayesL aims to provide verification capabilities and expressivity while remaining
at the level of the BN for property specification: a methaporical higher-level language for
BN querying, w.r.t. languages that query the underlying lower-level model translations.
BFL, PFL and ATM. Recent work develops logics for reasoning on fault trees [18, 19] and
attack trees [20]. These contributions do not allow for reasoning on BNs, however are aligned
in intent to us: i.e., they enable flexible reasoning and checking via a logic expressing queries
directly on the model of interest, and not on its underlying (Markovian) representation.

5 Conclusion
This work-in-progress contribution introduces BayesL, a logic designed to enhance the
interpretability and formal reasoning capabilities on BNs. BayesL supports expressive
querying over BNs, including conditional independence and probabilistic influence analysis,
as well as causal and evidential reasoning. A key feature is the ability to formulate what-if
scenarios via local updates to CPT entries, without manual modification of the underlying
model. The logic further supports non-standard queries involving threshold comparisons
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and flexible Boolean combinations of atomic properties, allowing users to express rich and
compositional probabilistic queries. In doing so, BayesL provides a principled framework
for the formal specification and verification of BN behaviour. Future work will focus on
developing scalable model checking algorithms for BayesL – reflecting semantics but encoding
them in a computationally efficient approach [16, 22], and on integrating constraint-guided
model learning to enable the synthesis of BNs that provably satisfy given logical requirements,
even when starting from partially specified models [1].
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