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Abstract6

This work aims at extending quantalic linear λ-calculus with additive structure. The focus here7

will be on the additive disjunction operator ⊕ for it closes an important gap in previous work: the8

lack of methods for reasoning about ‘case’ statements quantitatively, fundamental across a myriad9

of computational paradigms.10

Among other things, we extend the associated quantalic equational system to encompass the11

additive operator ⊕. We show that this extension is sound. We also show that when certain12

continuity properties (of the underlying quantale) are adopted it is additionally (approximately)13

complete. We briefly illustrate its use in probabilistic programming.14
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1 Introduction21

Previous work [7, 8] introduced a quantalic generalisation of linear λ-calculus, the exponential-22

free multiplicative fragment of linear logic. Here we start investigating the incorporation of23

additive structure to this body of work. Specifically our focus is on the additive disjunction24

operator ⊕, which is typically interpreted via coproducts and gives rise to ‘case’ statements25

(i.e. conditionals). Our motivation for it is highly practical: in trying to reason quantitatively26

about (higher-order) programs we often fell short when these involved conditionals. Of course27

applications involving ⊕ are broader than this, and typically fit in the more general pattern28

of reasoning quantitatively about co-Cartesian categories enriched over so-called ‘generalised29

metric spaces’ [19].30

Remarkably a number of important results already considered additive structure in the31

quantalic setting, even if sometimes implicitly. References [14, 15, 16, 12] for example are32

framed in the setting of universal algebra and therefore involve additive conjunction (i.e.33

&), typically interpreted via categorical products. In the higher-order setting, [13] enforces34

additive conjunction to be left adjoint to implication (interpreted via Cartesian-closedness),35

with a series of negative results emerging from this. Our work is orthogonal to these in that36

we study the dual of & (i.e. ⊕) and furthermore we assume the left adjoint of implication37

to be multiplicative conjunction (i.e. ⊗) instead of the additive counterpart. Among other38

things, this removes the obstacles discussed in [13].39

In this note we extend the quantalic equational system of [7, 8] to encompass the additive40

disjunction operator. We show that the extension is sound. We also show that when certain41

continuity properties (of the underlying quantale) are adopted it is complete. We show42

furthermore that even if the well-known Archimedean rule (often problematic) is dropped43

one still retains ‘approximate completeness’. We briefly illustrate our extended framework in44
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23:2 On the Additive Structure of Quantalic λ-calculus

the setting of probabilistic programming [6, 3]. We will focus specifically on reasoning about45

Cauchy sequences of (higher-order) programs – highlighting the emergent shift from “seeing46

program semantics as the science of program equivalence” [13] to more flexible, quantitative47

perspectives, involving functional analysis and beyond.48

2 Quantalic λ-calculus with additive disjunction49

The extension of linear λ-calculus in [7, 8] with additive disjunction is quite simple. The50

grammar of types now includes the type construct A ⊕ A and the judgement formation rules51

are extended with those in Figure 1.52

Γ ▷ v : A (inl)
Γ ▷ inlB(v) : A ⊕ B

Γ ▷ v : B (inr)
Γ ▷ inrA(v) : A ⊕ B

Γ ▷ v : A ⊕ B ∆, x : A ▷ w : D ∆, y : B ▷ u : D E ∈ Sf(Γ; ∆)
(case)

E ▷ case v {inlB(x) ⇒ w; inrA(y) ⇒ u} : D

Figure 1 Judgement formation rules for the additive operator ⊕.

It is laborious but straightforward to prove that the extended calculus inherits desirable53

features from the original calculus. Most notably it inherits the unique derivation, substitution,54

and exchange properties (where as usual the latter allows to change the order of variables in55

contexts). These rely on a shuffling mechanism whose details can be consulted in [7, 8, 20].56

The mechanism can actually be briefly glanced at in rule (case), where we stipulate that57

context E is a shuffle of the contexts Γ and ∆: in other words it is a permutation of the58

variables in Γ, ∆ that preserves their relative order in Γ and in ∆.59

In order to extend the quantalic equational system in [7, 8] with additive disjunction we60

need preliminaries. Thus let V denote a commutative and unital quantale, ⊗ : V × V → V61

the corresponding binary operation, and k its unit [19]. The following definition is essential62

for achieving our ‘(approximate) completeness’ result.63

▶ Definition 1. Consider a complete lattice L. For every x, y ∈ L we say that y is way-below64

x (in symbols, y ≪ x) if for every subset X ⊆ L whenever x ≤
∨

X there exists a finite65

subset F ⊆ X such that y ≤
∨

F . The lattice L is called continuous iff for every x ∈ L,66

x = sup{y | y ∈ L and y ≪ x}67

Let L be a complete lattice. A basis B of L is a subset B ⊆ L such that for every x ∈ L the68

set B ∩ {y | y ∈ L and y ≪ x} is directed and has x as the least upper bound.69

We also crucially rely on the following observations. Since every quantale V is a cocomplete70

category (specifically a complete sup-lattice) it will be complete as well [1, Section 12], in71

other words it has all infima. Also if V is continuous then for every x ∈ V the operation,72

x ∧ (−) : V → V73

is continuous as well, i.e. it preserves directed suprema [10, Proposition I-1.8]. Accordingly74

we will assume that the underlying lattice of V is continuous and has a basis B ∋ k closed75

under finite joins/meets and the multiplication of the quantale ⊗. We also assume that V76

is integral, i.e. that the unit k is the top element of V, a common assumption in quantale77
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theory [21]. Several examples of quantales that satisfy these constraints are presented and78

discussed in [7, 8]. Here we mention briefly the case of the metric quantale, for we use it in79

our illustration of probabilistic programming: in a nutshell, V is the set [0, ∞] and a basis is80

given by the non-negative rational numbers with infinity; the operation ⊗ is addition, the81

underlying order ≤ of V is ≥[0,∞], and the relation ≪ is the strictly greater > relation with82

∞ > ∞ (thus note that in this setting the top element k is actually 0 and ∞ is the least83

element).84

We are ready to present our quantalic equational system extended with the additive85

disjunction operator. In the original system, equations are labelled by elements q ∈ B ⊆ V of86

the quantale and classical equations v = w are represented by v =k w together with w =k v.87

The only difference is that the extended system now incorporates the rules in Figure 2. The88

equations on top of the dotted line are those already known for additive disjunction in the89

classical setting (see for example [5]). The ones on the bottom are new and serve as a form90

of ‘quantalic congruence’. Most notably the expression q ⊗ (r ∧ s) between case statements91

encodes a form of worst-case assumption: intuitively we take the ‘worst’ value w.r.t. {r, s} to92

reflect the possibility of taking the branch in which the two respective terms ‘differ’ the most93

– such value then compounds with q to reflect the ‘difference’ between the tests v and v′.94

In the metric setting an equation v =q w reads as “the two terms are at most at distance95

q of each other” and the expression q ⊗ (r ∧ s) instantiates to q + (r ∨ s).96

Observe that whilst the original quantalic system makes use of the quantale’s linear97

structure (i.e. ⊗), the extended version now also make use of the quantale’s Cartesian98

structure (i.e. infima). This ties up nicely with the corresponding categorical semantics,99

which we detail in the following section.

case inlB(v) {inlB(x) ⇒ w; inrA(y) ⇒ u} = w[v/x]
case inrA(v) {inlB(x) ⇒ w; inrA(y) ⇒ u} = u[v/y]
case v {inlB(y) ⇒ w[inlB(y)/x]; inrA(z) ⇒ w[inrA(z)/x]} = w[v/x]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v =q w

inlB(v) =q inlB(w)
v =q w

inrA(v) =q inrA(w)

v =q v′ w =r w′ u =s u′

case v {inlB(x) ⇒ w; inrA(y) ⇒ u} =q⊗(r∧s) case v′ {inlB(x) ⇒ w′; inrA(y) ⇒ u′}

Figure 2 Quantalic equational system for additive disjunction.
100

3 Categorical semantics101

The terms of the calculus detailed in the previous section are interpreted standardly in102

any symmetric monoidal closed (i.e. autonomous) category with binary coproducts. See a103

complete account for example in [5]. The interpretation of V-equations on the other hand104

requires a series of preliminaries which we briefly detail next.105

▶ Definition 2. A V-category is a pair (X, a) where X is a set and a : X × X → V is a106

function ( i.e. a V-relation) that satisfies:107

k ≤ a(x1, x1) and a(x1, x2) ⊗ a(x2, x3) ≤ a(x1, x3) (x1, x2, x3 ∈ X)108

CVIT 2016



23:4 On the Additive Structure of Quantalic λ-calculus

Take two V-categories (X, a) and (Y, b). A V-functor f : (X, a) → (Y, b) is a function109

f : X → Y that satisfies the inequality a(x1, x2) ≤ b(f(x1), f(x2)) for all x1, x2 ∈ X.110

V-categories and V-functors form a category which we denote by V-Cat. A V-category (X, a)111

is called symmetric if a(x1, x2) = a(x2, x1) for all x1, x2 ∈ X. We denote by V-Catsym the112

full subcategory of V-Cat whose objects are symmetric. Every V-category carries a natural113

order defined by x1 ≤ x2 whenever k ≤ a(x1, x2). A V-category is called separated if its114

natural order is anti-symmetric. We denote by V-Catsep the full subcategory of V-Cat whose115

objects are separated. When V is the metric quantale, V-Catsym,sep is the category Met of116

metric spaces and non-expansive maps. The categories V-Cat, V-Catsep, and V-Catsym,sep are117

autonomous whenever the quantale V is integral (see details in [7, 8]). Such gives rise to the118

following particular notion of enriched category.119

▶ Definition 3. A V-Cat-enriched autonomous category C is an autonomous and V-Cat-120

enriched category C such that the bifunctor ⊗ : C × C → C is a V-Cat-functor and the121

adjunction (− ⊗ X) ⊣ (X ⊸ −) is a V-Cat-adjunction. We obtain analogous notions of122

enriched autonomous category by replacing V-Cat (as basis of enrichment) with V-Catsep and123

V-Catsym,sep.124

The category V-Cat and the aforementioned variants also have products, given precisely by125

the quantale’s Cartesian structure (i.e. infima). This means that V-Cat provides an additional126

basis of enrichment via products – and this is what we will recur to in the interpretation of127

the extended quantalic system. Specifically we will assume that the categories involved in128

the interpretation have binary coproducts enriched over the Cartesian structure of V-Cat129

(rather than the monoidal structure). An abundance of examples of such categories is given130

by the following proposition, which we prove in the appendix (Section B).131

▶ Proposition 4. The categories V-Cat, V-Catsep, and V-Catsym,sep have binary coproducts132

enriched over their Cartesian structure.133

Next we present soundness and completeness for the interpretation structures just described.134

We start with the notion of (symmetric) Vλ-theory.135

▶ Definition 5 (Vλ-theories). Consider a tuple (G, Σ) consisting of a set G of ground types136

and a set Σ of sorted operation symbols. A Vλ-theory ((G, Σ), Ax) is a triple such that Ax is137

a set of V-equations-in-context over λ-terms built from (G, Σ). The theory is called symmetric138

if it also contains the symmetry rule (see details in [7, 8]). Elements of Ax will be called139

axioms and equations derivable from the equational system and Ax will be called theorems.140

▶ Definition 6 (Models of Vλ-theories). Consider a Vλ-theory ((G, Σ), Ax) and a V-Catsep-141

enriched autonomous category C with binary coproducts enriched over the Cartesian structure142

of V-Catsep. Suppose also that for each X ∈ G we have an interpretation JXK as a C-object143

and analogously for the operation symbols. This interpretation structure is a model of the144

theory if all axioms in Ax are satisfied by the interpretation. In case the theory is symmetric145

we change the basis of enrichment from V-Catsep to V-Catsym,sep (see details in [7, 8]).146

Take an interpretation structure as per the previous definition. We say that a V-equation147

Γ ▷ v =q w : A holds in the interpretation if q ≤ a(JvK , JwK) where a : C(JΓK , JAK) ×148

C(JΓK , JAK) → V is the underlying function of the V-category C(JΓK , JAK).149

▶ Theorem 7 (Soundness and Completeness). Consider a Vλ-theory T . A V-equation-in-150

context is a theorem iff it holds in all models of the theory.151
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Proof sketch. The proof piggybacks on the one in [7, 8], i.e. we only need to focus on the152

cases that involve additive disjunction. Nonetheless we still give a broad overview of the153

proof so that the reader gets a general feeling of what it requires.154

The soundness part uses induction over the depth of proof trees that arise from the155

extended deductive system. The general strategy for each inference rule is to use the156

autonomous enrichment as well as the definition of a V-category. The case of additive157

disjunction additionally requires the use of Cartesian enrichment.158

Completeness on the other hand is based on the idea of a Lindenbaum-Tarski algebra.159

Concretely we build the syntactic category Syn(T ) (also known as term model) of the160

underlying theory T and then show that provability of Γ ▷ v =q w : A in T is equivalent to161

a(JvK , JwK) ≥ q in the category Syn(T ). Thus for two types A and B, let Values(A,B) be162

the set of λ-terms v such that x : A ▷ v : B. We equip Values(A,B) with the V-relation a163

defined by,164

a(x : A ▷ v : B, y : A ▷ w : B) = sup {q | v =q w[x/y] is a theorem of T }165

It is easy to see that Values((A,B), a) is a V-category. We then quotient it into a separated V-166

category via the construction detailed in [7, 8]. The next step is to prove that this quotienting167

procedure is compatible with the term formation rules of the extended calculus. To this168

effect, in general one uses the fact that ⊗ distributes over suprema and the case of additive169

disjunction additionally requires the fact that q ∧ (−) distributes over directed suprema for170

every q ∈ V. This yields the desired category Syn(T ) which will respect Definition 3 and171

moreover possess binary coproducts enriched over the Cartesian structure of V-Catsep (resp.172

V-Catsym,sep).173

The final step is to show that if an equation Γ ▷ v =q v′ : A holds in Syn(T ) then it is a174

theorem of T . By assumption a([v], [v′]) = a(v, v′) = sup {r | v =r v′} ≥ q. It follows from175

the definition of the way-below relation that for all x ∈ B with x ≪ q there exists a finite set176

F ⊆ {r | v =r v′} such that x ≤ sup F . Then by an application of rule (join) ([8, Figure 4])177

we obtain v =sup F v′, and consequently, rule (weak) ([8, Figure 4]) provides v =x v′ for all178

x ≪ q. Finally by an application of rule (arch) ([8, Figure 4]) we deduce that v =q v′ is part179

of the theory. ◀180

Whilst extremely useful, the well-known Archimedean rule (see [7, 8, 14]) (arch) has the181

drawback of involving infinitely many premisses. It is thus often desirable to drop it, for182

computational reasons. The following result tells that such rule can be dropped while183

retaining a weaker form of completeness.184

▶ Theorem 8 (Approximate completeness). Consider a Vλ-theory T . If Γ ▷ v =q w : A185

holds in all models of the theory then for all approximations r ≪ q with r ∈ B we have186

Γ ▷ v =r w : A as a theorem. In particular if q is compact ( i.e. q ≪ q) we have Γ ▷ v =q w : A.187

Proof. One just needs to remove the last sentence of the previous proof. ◀188

4 A brief illustration with probabilistic programming189

We now briefly illustrate our framework in the setting of probabilistic programming, using190

as basic examples two main topics in probability theory [9] – probabilistic predicates and191

random walks on the real line. Our illustration will be grounded on a standard probabilistic192

model, namely the category Ban of Banach spaces and linear contractions [6]. As discussed193

in [7, 8] this category has a Met-enriched autonomous structure, and it is well-known that it194

CVIT 2016



23:6 On the Additive Structure of Quantalic λ-calculus

has binary coproducts given by the direct sum ⊕ equipped with the ℓ1 norm. Thus in order195

to fit Ban in our framework we only need to show that its coproduct structure is enriched196

over the Cartesian structure of Met. We detail this in the appendix (Section A) where we197

also recall some basic facts about measure theory.198

We proceed by presenting a metric λ-theory (Definition 5) on which to reason about199

predicates and random walks, as previously discussed. Our only ground type will be real to200

represent measures over real numbers – i.e. we set JrealK to be the space M(R) of measures201

over the real line. Recall that the monoidal unit of Ban is R. Concerning operations we202

take a pre-determined set of predicates p : real → I ⊕ I whose interpretation takes the203

form JpK (µ) = (µ(U), µ(U)) ∈ R ⊕ R for some measurable subset of U ⊆ R. Intuitively204

U ⊆ R corresponds to the subspace in which the predicate is supposed to hold. We also205

take a pre-determined set of actions a : I → (A ⊸ A) and a pre-determined set of measures206

m : I → real whose interpretation takes no particular form. Finally we consider addition207

+ : real, real → real whose interpretation is given by µ ⊗ ν 7→ +∗(µ ⊗ ν) where +∗ is the208

pushforward measure construction of + (see further details in [7, 8]). Next, given a measure209

m and actions a, b consider the following ‘abstract’ Bernoulli trial,210

p : real ⊸ I ⊕ I ▷ case p(m(∗)) of inl(x) ⇒ a(x); inr(y) ⇒ b(y)︸ ︷︷ ︸
bern(p)

: A ⊸ A211

Note that if the metric equation p1(m(∗)) =ϵ p2(m(∗)) holds for two predicates p1, p2 :212

real → I ⊕ I then the equation bern(λx.p1(x)) =ϵ bern(λx.p2(x)) must hold as well (as per213

our equational system). Such is useful to approximate Bernoulli trials that may be hard to214

compute as illustrated by the following examples.215

▶ Example 9 (Predicates and Cauchy sequences). Take a measure m and the predicate,216

x : real ▷ p 1
2

√
2(x) : I ⊕ I217

that returns true if x < 1
2
√

2 and false otherwise. Given the irrationality of 1
2
√

2 it is natural218

to consider successive approximations (−) ▷ pqn
(m(∗)) : I ⊕ I (n ∈ N) in which the condition219

x < 1
2
√

2 is replaced by x < qn for qn a rational number. We show next how our framework220

makes this idea precise. Take a sequence of rational numbers (qn)n∈N that converges to 1
2
√

2221

from below. We then postulate as axioms in our deductive system that (pqn(m(∗)))n∈N is a222

Cauchy sequence and furthermore that it converges to p 1
2

√
2(m(∗)). Such is asserted precisely223

by setting,224 {
∀ϵ > 0. ∃k ∈ N. ∀n ≥ k. pqn

(m(∗)) =ϵ pqn+1(m(∗)) (Cauchy sequence)
∀ϵ > 0. ∃k ∈ N. ∀n ≥ k. pqn(m(∗)) =ϵ p 1

2
√

2(m(∗)) (Convergence)
(1)225

for appropriate choices of k (which in our context is irrelevant to detail). The next step is to226

prove that this axiomatics is sound, i.e. that such equations hold in Ban, which is detailed in227

the appendix. In the next example we capitalise on such approximations, now formulated228

precisely, to reason about approximations of random walks.229

▶ Example 10 (Random walk approximations). We now consider the λ-term,230

(−) ▷ λx1. . . . xk. y. x1(. . . (xk(y)) . . . )︸ ︷︷ ︸
sequencek

231

which operationally speaking sequences k terms given as input. Also given a predicate232

p : real → I ⊕ I, take the term (−) ▷ sequencek bern(λx. p(x)) . . . bern(λx. p(x)) : A ⊸ A233
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which intuitively represents an abstract random walk of k-steps. In order to keep our notation234

simple we abbreviate this last term to rwalk(λx. p(x)). Now, it follows from our system that235

if p1(m(∗)) =ϵ p2(m(∗)) for two predicates p1 and p2 and a measure m then,236

rwalk(λx.p1(x)) =k·ϵ rwalk(λx.p2(x))237

In particular, from the previous example we deduce that rwalk(λx. pqn
(x)) is a Cauchy238

sequence that converges to rwalk(λx. p 1
2

√
2(x)). In other words the approximations obtained239

in the previous example propagate to the corresponding random walks.240

As a final illustration of the synergy between syntax and semantics that our framework241

provides, suppose now that the actions a, b : I → A ⊸ A involved in bern(λx. p(x)) are242

concrete jumps on the real line. To this effect we set the interpretations JaK , JbK : JIK →243

JrealK ⊸ JrealK to be,244

JaK (1) = µ 7→ +∗(µ ⊗ unif(0, 1)) JbK (1) = µ 7→ +∗(µ ⊗ unif(−1, 0))245

where unif(0, 1) ∈ M(R) is the uniform distribution on the interval [0, 1] and analogously for246

unif(−1, 0). Operationally a corresponds to a jump to the right with magnitude between 0247

and 1, and analogously for b. Suppose we have another action c : I → (real ⊸ real) whose248

interpretation is that of a except for the fact that unif(0, 1) is replaced by unif(0, 1 + δ).249

What will be the effect on the random walk when replacing a by c? Our approach for250

answering the previous question starts by ‘decomposing’ the actions a and c, via the axioms,251

a(∗) =0 λz. + (z, unif(0, 1)(∗)) c(∗) =0 λz. + (z, unif(0, 1 + δ)(∗))252

whose soundness is straightforward to prove. Note that we are slightly abusing notation by253

using unif(0, 1) (resp. unif(0, 1 + δ)) both as syntactic and semantic objects.254

The next step is to observe that one can put an upper bound between a(∗) and255

c(∗) via the previous axioms and an upper bound between the terms unif(0, 1)(∗) and256

unif(0, 1 + δ)(∗). The latter upper bound is obtained semantically by computing the norm257

∥unif(0, 1) − unif(0, 1 + δ)∥ in the way described in Section A. It will be specifically 2 · δ
1+δ .258

Then as our final step we proceed syntactically via the system of [7, 8] extended with additive259

disjunction, as follows.260

case p(m) of inl(x) ⇒ a(x); inr(y) ⇒ b(y)261

=0 case p(m) of inl(x) ⇒ x to ∗ . a(∗); inr(y) ⇒ b(y)262

=2· δ
1+δ

case p(m) of inl(x) ⇒ x to ∗ . c(∗); inr(y) ⇒ b(y)263

=0 case p(m) of inl(x) ⇒ c(x); inr(y) ⇒ b(y)264

Thus if rwalk(λx.p(x)) is the random walk that involves action a and rwalk′(λx.p(x)) the265

random walk that involves action c we deduce from the framework the metric equation,266

rwalk(λx.p(x)) =2k· δ
1+δ

rwalk′(λx.p(x))267

which will converge to 0 as δ tends to 0.268

5 Current work269

We are currently exploring the application of our framework to three other computational270

paradigms that we find to be particularly enticing. Namely, quantum computation [17],271

stochastic hybrid computation [11], and synthetic guarded domain theory [4]. Whilst the first272

two cases involve the metric quantale (as in the probabilitic example) the third case involves273

the so-called ultrametric quantale. For all three cases we are currently in the process of274

identifiying and/or building models that fit the requirements demanded from our framework.275
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A Support material for the probabilistic illustration332

The autonomous Met-enrichment of Ban is induced by the operator norm. Specifically given333

a linear map T : V → W between Banach spaces we have,334

∥T∥ = sup{∥T (v)∥ | v ∈ V, ∥v∥ = 1}335

Linear contractions will be precisely those linear maps T such that ∥T∥ ≤ 1, and the distance336

between two contractions T and S is set as ∥T − S∥. Given T : V → W and S : U → W337

their co-pairing [T, S] : V ⊕ U → W is defined by [T, S](v, u) = T (v) + S(u). The fact that338

the operator [T, S] is contractive follows from the inequation ∥[T, S]∥ ≤ max{∥T∥ , ∥S∥} –339

which is straightforward to prove when one notices that every unitary vector (v, u) ∈ V ⊕ U340

can be rewritten as,341

(
∥v∥ 1

∥v∥
v, ∥u∥ 1

∥u∥
u

)
∥v∥ + ∥u∥ = 1342

The fact that the coproduct structure of Ban is enriched over the Cartesian structure of Met343

then follows rather directly,344

d([T, S], [T ′, S′]) = ∥[T, S] − [T ′, S′]∥345

= ∥[T − T ′, S − S′]∥346

≤ max{∥T − T ′∥ , ∥S − S′∥}347

= max{d(T, T ′), d(S, S′)}348

Our illustration involves the notion of a measure which we briefly describe next (see e.g. [2,349

Chapter 10] or [18, Chapter 2] for a thorough account).350

▶ Definition 11. For a measurable space (X, ΣX) a measure is a function µ : ΣX → R such351

that µ(∅) = 0 and moreover it is σ-additive, i.e.352

µ

( ∞⋃
i=1

Ui

)
=

∞∑
i=1

µ(Ui)353

where (Ui)i∈ω is any family of pairwise disjoint measurable sets. A measure µ is called354

positive if µ(U) ≥ 0 for all measurable sets U and a distribution if furthermore µ(X) = 1.355

For a measurable space X the set of measures M(X) forms a vector space via pointwise356

extension. It also forms a Banach space when equipped with the total variation norm,357

∥µ∥ = sup
{

n∑
i=1

∥µ(Ui)∥ | {U1, . . . , Un} is a measurable partition
}

358

In our probabilistic illustration we axiomatised that bern(λx. pqn
(x))n∈N is a Cauchy sequence359

that furthermore converges to bern(λx. p 1
2

√
2(x)). We show next that this axiomatics is360
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sound, via the following reasoning.361

r
p 1

2
√

2(x)
z

(µ)362

=
(

µ

(
−∞,

1
2

√
2
)

, µ(X) − µ

(
−∞,

1
2

√
2
))

363

=
(

µ

(⋃
n∈N

(−∞, qn)
)

, µ(X) − µ

(
−∞,

1
2

√
2
)) {

(qn)n∈N ↗ 1
2

√
2
}

364

=
(

sup
n∈N

µ ((−∞, qn)) , µ(X) − µ

(
−∞,

1
2

√
2
))

{Measure properties}365

=
(

lim
n→∞

µ ((−∞, qn)) , µ(X) − µ

(
−∞,

1
2

√
2
))

{Limits coincide with sup. of inc. seq.}366

=
(

lim
n→∞

µ ((−∞, qn)) , lim
n→∞

µ(−∞, qn)
)

{Measure properties}367

= lim
n→∞

(
µ ((−∞, qn)) , µ(−∞, qn)

)
368

= lim
n→∞

Jpqn
(x)K (µ)369

Finally a useful fact about computing norms is that ∥µ∥ = µ+(X) + µ−(X) where µ+ and370

µ− are the positive and negative parts of µ respectively (see details in [2, Section 8.2. and371

Section 10.10]). We use this to compute the norm of unif(0, 1) − unif(0, 1 + δ), as required372

in the main text. First,373

∥unif(0, 1) − unif(0, 1 + δ)∥374

= (unif(0, 1) − unif(0, 1 + δ))+(R) + (unif(0, 1) − unif(0, 1 + δ))−(R)375

and proceed by computing the left-hand side of the addition,376

(unif(0, 1) − unif(0, 1 + δ))+(R)377

= sup{unif(0, 1)(U) − unif(0, 1 + δ)(U) | U ⊆ R}378

= sup{unif(0, 1)(U ∩ [0, 1]) − unif(0, 1 + δ)(U ∩ [0, 1]) − unif(0, 1 + δ)(U ∩ (1, 1 + δ]) | U ⊆ R}379

= sup
{(

1 − 1
1 + δ

)
unif(0, 1)(U ∩ [0, 1]) − unif(0, 1 + δ)(U ∩ (1, 1 + δ]) | U ⊆ R

}
380

= 1 − 1
1 + δ

381

It follows from an analogous reasoning the right-hand side of the addition will be δ
1+δ and382

therefore the norm will be 2 · δ
1+δ .383

B Proofs384

Proof of Proposition 4. Given two V-categories (X, aX) and (Y, aY ) the carrier of the385

coproduct is given by the Set-theoretic coproduct X + Y . The corresponding V-relation386

aX+Y is given by,387 
aX+Y (inl(x1), inl(x2)) = aX(x1, x2)
aX+Y (inr(y1), inr(y2)) = aY (y1, y2)
aX+Y (inl(x), inr(y)) = aX+Y (inr(y), inl(x)) = ⊥

388
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Co-pairing is defined as in Set. The Cartesian enrichment follows straightforwardly from the389

fact that the V-relation of every hom-set V-Cat((X, aX), (Y, aY )) is given by infima and the390

equation (
∧

D) ∧ (
∧

F ) =
∧

(D ∪ F ) for all subsets D , F of V. The same reasoning about391

the Cartesian enrichment applies to V-Catsep and V-Catsym,sep. ◀392
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