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—— Abstract

This work aims at extending quantalic linear A-calculus with additive structure. The focus here
will be on the additive disjunction operator & for it closes an important gap in previous work: the
lack of methods for reasoning about ‘case’ statements quantitatively, fundamental across a myriad
of computational paradigms.

Among other things, we extend the associated quantalic equational system to encompass the
additive operator &. We show that this extension is sound. We also show that when certain
continuity properties (of the underlying quantale) are adopted it is additionally (approximately)
complete. We briefly illustrate its use in probabilistic programming.
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1 Introduction

Previous work [7, 8] introduced a quantalic generalisation of linear A-calculus, the exponential-
free multiplicative fragment of linear logic. Here we start investigating the incorporation of
additive structure to this body of work. Specifically our focus is on the additive disjunction
operator @, which is typically interpreted via coproducts and gives rise to ‘case’ statements
(i.e. conditionals). Our motivation for it is highly practical: in trying to reason quantitatively
about (higher-order) programs we often fell short when these involved conditionals. Of course
applications involving & are broader than this, and typically fit in the more general pattern
of reasoning quantitatively about co-Cartesian categories enriched over so-called ‘generalised
metric spaces’ [19].

Remarkably a number of important results already considered additive structure in the
quantalic setting, even if sometimes implicitly. References [14, 15, 16, 12] for example are
framed in the setting of universal algebra and therefore involve additive conjunction (i.e.
&), typically interpreted via categorical products. In the higher-order setting, [13] enforces
additive conjunction to be left adjoint to implication (interpreted via Cartesian-closedness),
with a series of negative results emerging from this. Our work is orthogonal to these in that
we study the dual of & (i.e. @) and furthermore we assume the left adjoint of implication
to be multiplicative conjunction (i.e. ®) instead of the additive counterpart. Among other
things, this removes the obstacles discussed in [13].

In this note we extend the quantalic equational system of [7, 8] to encompass the additive
disjunction operator. We show that the extension is sound. We also show that when certain
continuity properties (of the underlying quantale) are adopted it is complete. We show
furthermore that even if the well-known Archimedean rule (often problematic) is dropped
one still retains ‘approximate completeness’ We briefly illustrate our extended framework in
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the setting of probabilistic programming [6, 3]. We will focus specifically on reasoning about
Cauchy sequences of (higher-order) programs — highlighting the emergent shift from “seeing
program semantics as the science of program equivalence” [13] to more flexible, quantitative
perspectives, involving functional analysis and beyond.

2  Quantalic \-calculus with additive disjunction

The extension of linear A-calculus in [7, 8] with additive disjunction is quite simple. The
grammar of types now includes the type construct A @ A and the judgement formation rules
are extended with those in Figure 1.

T'bv: A (in) I'bov:B

(inr)
Irinlg(v) : A®B I>inra(v) : A B

F'bv:AdB Az:Avw:D Ajy:Bru:D FEeSi(;A)

case)
E > case v {inlg(z) = w; inra(y) = u} : D

Figure 1 Judgement formation rules for the additive operator .

It is laborious but straightforward to prove that the extended calculus inherits desirable
features from the original calculus. Most notably it inherits the unique derivation, substitution,
and exchange properties (where as usual the latter allows to change the order of variables in
contexts). These rely on a shuffling mechanism whose details can be consulted in [7, 8, 20].
The mechanism can actually be briefly glanced at in rule (case), where we stipulate that
context E is a shuffle of the contexts I' and A: in other words it is a permutation of the
variables in ', A that preserves their relative order in I' and in A.

In order to extend the quantalic equational system in [7, 8] with additive disjunction we
need preliminaries. Thus let V denote a commutative and unital quantale, ® : V xV — V
the corresponding binary operation, and k its unit [19]. The following definition is essential
for achieving our ‘(approximate) completeness’ result.

» Definition 1. Consider a complete lattice L. For every x,y € L we say that y is way-below
x (in symbols, y < x) if for every subset X C L whenever x < \/ X there exists a finite
subset F C X such that y <\/ F. The lattice L is called continuous iff for every x € L,

z=sup{y |y € L andy < x}

Let L be a complete lattice. A basis B of L is a subset B C L such that for every x € L the
set BN{y|y €L and y <K z} is directed and has x as the least upper bound.

We also crucially rely on the following observations. Since every quantale V is a cocomplete
category (specifically a complete sup-lattice) it will be complete as well [1, Section 12], in
other words it has all infima. Also if V is continuous then for every x € )V the operation,

xA(=): V=V

is continuous as well, 7.e. it preserves directed suprema [10, Proposition I-1.8]. Accordingly
we will assume that the underlying lattice of V is continuous and has a basis B 5 k closed
under finite joins/meets and the multiplication of the quantale ®. We also assume that V
is integral, i.e. that the unit k is the top element of V, a common assumption in quantale
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theory [21]. Several examples of quantales that satisfy these constraints are presented and
discussed in [7, 8]. Here we mention briefly the case of the metric quantale, for we use it in
our illustration of probabilistic programming: in a nutshell, V is the set [0, 0c0] and a basis is
given by the non-negative rational numbers with infinity; the operation ® is addition, the
underlying order < of V is >y ], and the relation < is the strictly greater > relation with
00 > 00 (thus note that in this setting the top element k is actually 0 and oo is the least
element).

We are ready to present our quantalic equational system extended with the additive
disjunction operator. In the original system, equations are labelled by elements ¢ € B C V of
the quantale and classical equations v = w are represented by v = w together with w =, v.
The only difference is that the extended system now incorporates the rules in Figure 2. The
equations on top of the dotted line are those already known for additive disjunction in the
classical setting (see for example [5]). The ones on the bottom are new and serve as a form
of ‘quantalic congruence’. Most notably the expression ¢ ® (r A s) between case statements
encodes a form of worst-case assumption: intuitively we take the ‘worst’ value w.r.t. {r, s} to
reflect the possibility of taking the branch in which the two respective terms ‘differ’ the most
— such value then compounds with ¢ to reflect the ‘difference’ between the tests v and v’.

In the metric setting an equation v =, w reads as “the two terms are at most at distance
q of each other” and the expression ¢ ® (r A s) instantiates to ¢ + (r V s).

Observe that whilst the original quantalic system makes use of the quantale’s linear
structure (i.e. ®), the extended version now also make use of the quantale’s Cartesian
structure (i.e. infima). This ties up nicely with the corresponding categorical semantics,
which we detail in the following section.

case inlg(v) {inlg(x) = w; inra(y) = u} = wlv/]
case inrg (v) {inlg(z) = w; inra(y) = u} = ufv/y]

case v {inlg(y) = w(inlg(y)/x]; inra(z) = wlinra(z)/z]} = wlv/z

V=g w V=4 w

inlg(v) =4 inlg(w) inry (v) =4 inra (w)

_ / _ ! _ !
vV =q v w =, W U =g U

case v {inlg(x) = w; inrg(y) = u} =¢g(rrs) case v’ {inlg(z) = w'; inra(y) = v’}

Figure 2 Quantalic equational system for additive disjunction.

3 Categorical semantics

The terms of the calculus detailed in the previous section are interpreted standardly in
any symmetric monoidal closed (i.e. autonomous) category with binary coproducts. See a
complete account for example in [5]. The interpretation of V-equations on the other hand
requires a series of preliminaries which we briefly detail next.

» Definition 2. A V-category is a pair (X,a) where X is a set anda: X x X =V is a
function (i.e. a V-relation) that satisfies:

k<a(xy,z1) and a(xy,22) ® a(xg, x3) < alxy,x3) (x1,29,23 € X)
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Take two V-categories (X,a) and (Y,b). A V-functor f : (X,a) — (Y,b) is a function
f:X =Y that satisfies the inequality a(x1,x2) < b(f(z1), f(z2)) for all x1,22 € X.

V-categories and V-functors form a category which we denote by V-Cat. A V-category (X, a)
is called symmetric if a(z1,22) = a(xa, 1) for all 1,2, € X. We denote by V-Cateym the
full subcategory of V-Cat whose objects are symmetric. Every V-category carries a natural
order defined by x; < x5 whenever k < a(x1,z2). A V-category is called separated if its
natural order is anti-symmetric. We denote by V-Catse, the full subcategory of V-Cat whose
objects are separated. When V is the metric quantale, V-Cateym sep is the category Met of
metric spaces and non-expansive maps. The categories V-Cat, V-Catsep, and V-Catsym sep are
autonomous whenever the quantale V is integral (see details in [7, 8]). Such gives rise to the
following particular notion of enriched category.

» Definition 3. A V-Cat-enriched autonomous category C is an autonomous and V-Cat-
enriched category C such that the bifunctor ® : C x C — C is a V-Cat-functor and the
adjunction (— @ X) 4 (X — —) is a V-Cat-adjunction. We obtain analogous notions of
enriched autonomous category by replacing V-Cat (as basis of enrichment) with V-Catsep and
V-Catsym,sep-

The category V-Cat and the aforementioned variants also have products, given precisely by
the quantale’s Cartesian structure (7.e. infima). This means that V-Cat provides an additional
basis of enrichment via products — and this is what we will recur to in the interpretation of
the extended quantalic system. Specifically we will assume that the categories involved in
the interpretation have binary coproducts enriched over the Cartesian structure of V-Cat
(rather than the monoidal structure). An abundance of examples of such categories is given
by the following proposition, which we prove in the appendix (Section B).

» Proposition 4. The categories V-Cat, V-Cateep, and V-Catsym sep have binary coproducts
enriched over their Cartesian structure.

Next we present soundness and completeness for the interpretation structures just described.
We start with the notion of (symmetric) VA-theory.

» Definition 5 (V\-theories). Consider a tuple (G,X) consisting of a set G of ground types
and a set ¥ of sorted operation symbols. A VA-theory ((G,X), Ax) is a triple such that Az is
a set of V-equations-in-context over A-terms built from (G, X). The theory is called symmetric
if it also contains the symmetry rule (see details in [7, 8]). Elements of Ax will be called
axioms and equations derivable from the equational system and Ax will be called theorems.

» Definition 6 (Models of VA-theories). Consider a VA-theory ((G,X), Az) and a V-Cateep-
enriched autonomous category C with binary coproducts enriched over the Cartesian structure
of V-Cateep. Suppose also that for each X € G we have an interpretation [X] as a C-object
and analogously for the operation symbols. This interpretation structure is a model of the
theory if all axioms in Ax are satisfied by the interpretation. In case the theory is symmetric
we change the basis of enrichment from V-Cateep to V-Catsym sep (See details in [7, 8]).

Take an interpretation structure as per the previous definition. We say that a V-equation
I'>v =, w : A holds in the interpretation if ¢ < a([v],[w]) where a : C([T'],[A]) x
C([T'],[A]) — V is the underlying function of the V-category C([I'], [A]).

» Theorem 7 (Soundness and Completeness). Consider a VA-theory 7. A V-equation-in-
context is a theorem iff it holds in all models of the theory.



152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

Bruna Salgado and Renato Neves

Proof sketch. The proof piggybacks on the one in [7, 8], i.e. we only need to focus on the
cases that involve additive disjunction. Nonetheless we still give a broad overview of the
proof so that the reader gets a general feeling of what it requires.

The soundness part uses induction over the depth of proof trees that arise from the
extended deductive system. The general strategy for each inference rule is to use the
autonomous enrichment as well as the definition of a V-category. The case of additive
disjunction additionally requires the use of Cartesian enrichment.

Completeness on the other hand is based on the idea of a Lindenbaum-Tarski algebra.
Concretely we build the syntactic category Syn(.7) (also known as term model) of the
underlying theory 7 and then show that provability of I'bv =, w : A in 7 is equivalent to
a([v], [w]) > q in the category Syn(.7). Thus for two types A and B, let Values(A, B) be
the set of A\-terms v such that x : A> v : B. We equip Values(A,B) with the V-relation a
defined by,

a(z:Avv:B,y: Avw:B)=sup{q|v =4 w[z/y] is a theorem of T}

It is easy to see that Values((A,B), a) is a V-category. We then quotient it into a separated V-
category via the construction detailed in [7, 8]. The next step is to prove that this quotienting
procedure is compatible with the term formation rules of the extended calculus. To this
effect, in general one uses the fact that ® distributes over suprema and the case of additive
disjunction additionally requires the fact that ¢ A (=) distributes over directed suprema for
every ¢ € V. This yields the desired category Syn(Z) which will respect Definition 3 and
moreover possess binary coproducts enriched over the Cartesian structure of V-Cateep (resp.
V-Catsym sep)-

The final step is to show that if an equation I'>v =, v’ : A holds in Syn(.7) then it is a
theorem of .7. By assumption a([v], [v']) = a(v,v") = sup{r | v =, v'} > ¢. It follows from
the definition of the way-below relation that for all z € B with x < ¢ there exists a finite set
F C{r|v=,v'} such that 2 < sup F. Then by an application of rule (join) ([8, Figure 4])
we obtain v =g, r v, and consequently, rule (weak) ([8, Figure 4]) provides v =, v’ for all
x < ¢. Finally by an application of rule (arch) ([8, Figure 4]) we deduce that v =, v’ is part
of the theory. <

Whilst extremely useful, the well-known Archimedean rule (see [7, 8, 14]) (arch) has the
drawback of involving infinitely many premisses. It is thus often desirable to drop it, for
computational reasons. The following result tells that such rule can be dropped while
retaining a weaker form of completeness.

» Theorem 8 (Approximate completeness). Consider a VA-theory J. IfT'pv =4 w : A
holds in all models of the theory then for all approximations r < q with r € B we have
I'>v =, w:A as a theorem. In particular if q is compact (i.e. ¢ < q) we have I'bv =4 w : A.

Proof. One just needs to remove the last sentence of the previous proof. <

4 A brief illustration with probabilistic programming

We now briefly illustrate our framework in the setting of probabilistic programming, using
as basic examples two main topics in probability theory [9] — probabilistic predicates and
random walks on the real line. Our illustration will be grounded on a standard probabilistic
model, namely the category Ban of Banach spaces and linear contractions [6]. As discussed
in [7, 8] this category has a Met-enriched autonomous structure, and it is well-known that it
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has binary coproducts given by the direct sum & equipped with the £; norm. Thus in order
to fit Ban in our framework we only need to show that its coproduct structure is enriched
over the Cartesian structure of Met. We detail this in the appendix (Section A) where we
also recall some basic facts about measure theory.

We proceed by presenting a metric A-theory (Definition 5) on which to reason about
predicates and random walks, as previously discussed. Our only ground type will be real to
represent measures over real numbers — i.e. we set [real] to be the space M(R) of measures
over the real line. Recall that the monoidal unit of Ban is R. Concerning operations we
take a pre-determined set of predicates p : real — 1@ I whose interpretation takes the
form [p] (1) = (u(U),(U)) € R & R for some measurable subset of U C R. Intuitively
U C R corresponds to the subspace in which the predicate is supposed to hold. We also
take a pre-determined set of actions a : T — (A — A) and a pre-determined set of measures
m : [ — real whose interpretation takes no particular form. Finally we consider addition
+ : real,real — real whose interpretation is given by u ® v — +,(u ® v) where +, is the
pushforward measure construction of + (see further details in [7, 8]). Next, given a measure
m and actions a, b consider the following ‘abstract’ Bernoulli trial,

p:real —o I ® I case p(m(x)) of inl(z) = a(x);inr(y) = b(y) : A — A

bern(p)

Note that if the metric equation pj(m(x)) = p2(m(x)) holds for two predicates py,ps :
real — I &1 then the equation bern(Az.p;(z)) = bern(Az.pa(x)) must hold as well (as per
our equational system). Such is useful to approximate Bernoulli trials that may be hard to
compute as illustrated by the following examples.

» Example 9 (Predicates and Cauchy sequences). Take a measure m and the predicate,
r:realbpy s(z) 101

that returns true if z < % 2 and false otherwise. Given the irrationality of % 2 it is natural
to consider successive approximations (—) > pg, (m(x)) : I® I (n € N) in which the condition
T < % 2 is replaced by = < g, for g, a rational number. We show next how our framework
makes this idea precise. Take a sequence of rational numbers (g, )nen that converges to %ﬁ
from below. We then postulate as axioms in our deductive system that (p,, (m(*)))nen is a
Cauchy sequence and furthermore that it converges to Py va(m(x)). Such is asserted precisely
by setting,

{Ve > 0.3k € N.Vn > k.pg, (m(*)) =c pg,., (m(x)) (Cauchy sequence) 1)

Ve > 0.3k € N.Vn > k.pg, (m(x)) =. p%\/ﬁ(m(*)) (Convergence)
for appropriate choices of k (which in our context is irrelevant to detail). The next step is to
prove that this axiomatics is sound, i.e. that such equations hold in Ban, which is detailed in

the appendix. In the next example we capitalise on such approximations, now formulated
precisely, to reason about approximations of random walks.

» Example 10 (Random walk approximations). We now consider the A-term,

(=)>Azy. .o zpey. (e (2R(y)) - L)

sequencex

which operationally speaking sequences k terms given as input. Also given a predicate
p:real — I @[ take the term (—) > sequencey bern(Az.p(x)) ... bern(Az.p(x)) : A — A
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which intuitively represents an abstract random walk of k-steps. In order to keep our notation
simple we abbreviate this last term to rwalk(Az.p(z)). Now, it follows from our system that
if p1(m(x)) =¢ p2(m(x)) for two predicates p; and ps and a measure m then,

rwalk(Az.p1(z)) =k.c rwalk(Az.pa(x))

In particular, from the previous example we deduce that rwalk(Az.pg, (z)) is a Cauchy
sequence that converges to rwalk(Ax. Py v3()). In other words the approximations obtained
in the previous example propagate to the corresponding random walks.

As a final illustration of the synergy between syntax and semantics that our framework
provides, suppose now that the actions a,b : I — A — A involved in bern(Az.p(z)) are
concrete jumps on the real line. To this effect we set the interpretations [a], [0] : [I] —
[real] —o [real] to be,

[a] (1) = = +. (11 © wnif (0, 1)) [6] (1) = p = +. (1 ® unif(~1,0))

where unif(0,1) € M(R) is the uniform distribution on the interval [0, 1] and analogously for
unif(—1,0). Operationally a corresponds to a jump to the right with magnitude between 0
and 1, and analogously for b. Suppose we have another action ¢ : I — (real —o real) whose
interpretation is that of a except for the fact that unif(0, 1) is replaced by unif(0,1 4+ 9).
What will be the effect on the random walk when replacing a by ¢? Our approach for
answering the previous question starts by ‘decomposing’ the actions a and ¢, via the axioms,

a(x) =g Az. + (z,unif(0,1)(x*)) c(x) =0 Az. + (z,unif (0,14 0)(*))

whose soundness is straightforward to prove. Note that we are slightly abusing notation by
using unif(0, 1) (resp. unif(0,1 + J)) both as syntactic and semantic objects.

The next step is to observe that one can put an upper bound between a(*) and
c(x) via the previous axioms and an upper bound between the terms unif(0,1)(x) and
unif(0,1+ §)(*). The latter upper bound is obtained semantically by computing the norm
|lunif(0,1) —unif(0,1 + J)|| in the way described in Section A. It will be specifically 2 - %.
Then as our final step we proceed syntactically via the system of [7, 8] extended with additive
disjunction, as follows.

case p(m) of inl(z) = a(z);inr(y) = b(y)

=¢ case p(m) of inl(z) = = to *.a(x);inr(y) = b(y)
=g 2, Case p(m) of inl(x) = x to x . c(x);inr(y) = b(y)
=g case p(m) of inl(x) = ¢(x);inr(y) = b(y)

Thus if rwalk(Az.p(x)) is the random walk that involves action a and rwalk’(Az.p(z)) the
random walk that involves action ¢ we deduce from the framework the metric equation,

rwalk(Az.p(x)) =y o rwalk’(\z.p(z))

which will converge to 0 as ¢ tends to 0.

5  Current work

We are currently exploring the application of our framework to three other computational
paradigms that we find to be particularly enticing. Namely, quantum computation [17],
stochastic hybrid computation [11], and synthetic guarded domain theory [4]. Whilst the first
two cases involve the metric quantale (as in the probabilitic example) the third case involves
the so-called ultrametric quantale. For all three cases we are currently in the process of
identifiying and/or building models that fit the requirements demanded from our framework.
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On the Additive Structure of Quantalic \-calculus

A  Support material for the probabilistic illustration

The autonomous Met-enrichment of Ban is induced by the operator norm. Specifically given
a linear map T : V — W between Banach spaces we have,

17| = sup{IT(v)[| [ v € V; [Joll = 1}

Linear contractions will be precisely those linear maps T" such that ||T|| < 1, and the distance
between two contractions T and S is set as |7 — S||. Given T : V - Wand S: U - W
their co-pairing [T, 5] : V @& U — W is defined by [T, S](v,u) = T'(v) + S(u). The fact that
the operator [T, 5] is contractive follows from the inequation ||[T, S]|| < max{||T||, |S||} -
which is straightforward to prove when one notices that every unitary vector (v,u) € Vo U
can be rewritten as,

1 1
ol o, ] u) ol + lufl = 1
( ror % 1l g

The fact that the coproduct structure of Ban is enriched over the Cartesian structure of Met
then follows rather directly,

d([T7 S]? [T/,S/]) = H[T’ S] - [Tl,Sl]”
=|[T-1".5 - 51|
< max{||T =T, |S — "I}
= max{d(T,T"),d(S,S")}

Our illustration involves the notion of a measure which we briefly describe next (see e.g. [2,
Chapter 10] or [18, Chapter 2] for a thorough account).

» Definition 11. For a measurable space (X,Xx) a measure is a function p: Xx — R such
that (@) = 0 and moreover it is o-additive, i.e.

Iz <U Ui) = ZM(Ui)
i=1 i=1

where (U;)icw 8 any family of pairwise disjoint measurable sets. A measure p is called
positive if p(U) > 0 for all measurable sets U and a distribution if furthermore p(X) = 1.

For a measurable space X the set of measures M(X) forms a vector space via pointwise
extension. It also forms a Banach space when equipped with the total variation norm,

|||l = sup {Z (U | {U1,...,Us} is a measurable partition }
i=1

In our probabilistic illustration we axiomatised that bern(Az. py, (¢))nen is a Cauchy sequence
that furthermore converges to bern(\x. Ps /3(®)). We show next that this axiomatics is
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1 sound, via the following reasoning.

( ( ),M(X)—u<—oo,;\/§>)
(” ( Al q”) X —n (C’O;@) {@hoen » 52

1
sup p ((—00,¢n)), p(X) — p <oo, 2\[2)) {Measure properties}

<n€N
~

1
lim g ((—00,qn)), w(X) — p <—oo, 2\@)) {Limits coincide with sup. of inc. seq.}

362 1
Py \/5

363

364

365

366

n—oo
w7 = (nlgrgo (=00, qn)) ,nILH;O u@) {Measure properties}
368 = nll)ﬁgo (M(<_OOaQTL))7M(_OO7qn)>

w = lim [pg, (2)] (1)

s Finally a useful fact about computing norms is that ||u|| = p*(X) + = (X) where ™ and
sn p~ are the positive and negative parts of u respectively (see details in [2, Section 8.2. and
sz Section 10.10]). We use this to compute the norm of unif(0,1) —unif(0,1 + J), as required
a3 in the main text. First,

s |lunif(0,1) —unif(0,1+ )|
s = (unif(0,1) —unif(0,1+6))"(R) + (unif(0,1) —unif(0,1+4))" (R)

s and proceed by computing the left-hand side of the addition,

w7 (unif(0,1) —unif(0,1+ §))"(R)
s = sup{unif(0,1)(U) —unif(0,1+4)(U) | U C R}
s = sup{unif(0,1)(U N[0,1]) —unif(0,1+d)(UN[0,1]) —unif(0,1+6)(UN(1,1+6]) | U C R}

0 = Sup { (1 - 1_1(5) unif(0,1)(UN[0,1]) —unif(0,1+6)(UN(1,14+6]) | U C R}

B 1

381 - I e—

146

s It follows from an analogous reasoning the right-hand side of the addition will be %6 and

3 therefore the norm will be 2 - T

w B Proofs

ss  Proof of Proposition 4. Given two V-categories (X,ax) and (Y,ay) the carrier of the
s coproduct is given by the Set-theoretic coproduct X + Y. The corresponding V-relation
387 AX+4+Y is given by,

ax+y (inl(z1), inl(22)) = ax (1, 22)
s ax+ty (inr(y1), inr(y2)) = ay (y1,y2)
ax+y (inl(z),inr(y)) = aX+Y(1nr(y), inl(z)) = L
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Co-pairing is defined as in Set. The Cartesian enrichment follows straightforwardly from the
fact that the V-relation of every hom-set V-Cat((X,ax), (Y, ay)) is given by infima and the

equation (A 2) A (A F) = AN(2 U F) for all subsets 2,.% of V. The same reasoning about
the Cartesian enrichment applies to V-Catsep and V-Catgym sep- <
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