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—— Abstract
We present a work recently appeared in the journal Information Systems on the use of techniques
from Markov chain learning to the problem of Stochastic Conformance Checking in Process Mining.
The connection with the workshop is that we see stochastic conformance checking as a possible
application domain for behavioural metrics and quantitative logics.
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Extended Abstract

Process Mining (PM) is an interdisciplinary research area with the goal of extracting insights
and knowledge from execution traces of a process, bridging the gap between data science
and process science [27]. PM consists of a wide range of techniques structured in three
macro domains: process discovery, process enhancement, and conformance checking. Process
discovery is about learning a graphical representation of a process starting from logs of its
executions. Process enhancement regards enriching a model with additional information,
such as the frequency of executed activities or paths. Lastly, conformance checking is a
key problem of PM, enabling the identification, quantification, and analysis of deviations
among reference and mined processes [3]. Several proposals in PM focus on the stochastic
nature of the studied process (see, e.g., [12, 13, 25], just to cite a few). However, usually
PM, and conformance checking techniques in particular, do not focus on the stochastic
aspects of the studied process, and consider qualitative models. In other words, most of the
conformance checking techniques ignore the stochastic perspective of the process model (see,
e.g., the discussion in [21]). Recently, there has been a growing interest towards stochastic
conformance checking (SCC, see, e.g., [16, 22, 14]). These are approaches to conformance
checking that emphasize stochastic aspects of the underlying process, like the frequency
and probability of traces, and consider quantitative models. The most recent among these
approaches are based of stochastic distances like the famous Earth Mover’s Distance (EMD,
also known as Wasserstein distance) [24]. There exist SCC measures based on it named Earth
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Movers’ Stochastic Conformance (EMSC), or unit EMSC (uEMSC) [16, 14]. All approaches
to SCC start from a reference model and from a group of traces. Both are transformed
into stochastic languages (i.e., traces and their probabilities). To compare the two obtained
stochastic languages, stochastic variants of the EMD distance are computed among them.
This distance is then ultimately used to establish the conformance of the group of traces to
the model.

Over the years, the software performance engineering (PE) community developed tech-
niques for synthesizing Markovian models that accurately describe the stochastic process
underlying programs (see., e.g., [9, 5, 1, 20, 8, 18, 19, 7, 10]). However, surprisingly, stochastic
conformance checking is not central in PE.

In a recent paper [11], we proposed to the PM community a novel approach to SCC based
on PE techniques developed for synthetizing Markovian models. Given a log, we mine, or
learn, a Variable-length Markov Chain (VLMC, higher-order Markovian models equipped with
memory) [9]. Intuitively, VLMCs are Markov chains which use memory, partially departing
from the memory-less property. For each trace, they build a trace-specific dependency on
the previous events (the memory). This is used to compute a precise probability distribution
for the next event. For this reason, VLMCs are well-suited for compactly expressing complex
path dependencies in the process. In [11], we further equip VLMCs with a method for
stochastic conformance checking. We do this using the VLMC notion of likelihood of a trace
in a discovered stochastic process, that is, the probability for the model to generate that trace.
Taking inspiration from the SCC literature (e.g., [17, 15]), we use likelihood to do SCC of a
log against a model. In particular, we use the conformance measure uEMSC, standard in the
SCC literature. Our method is therefore an innovative approach to stochastic conformance
checking. Our method is accurate: it gives high uEMSC values, often close to 1, for logs
conformant to models.

Our claims are supported by a rich experimental evaluation in [11]. We considered
11 benchmark datasets from the PM literature, and 18 competitor SCC techniques. In
particular, we used all datasets considered in [17], a paper presenting a previous approach
to SCC. Furthermore, we benchmark with all the 15 SCC techniques considered in [17],
and with the 3 additional ones considered in [15]. The results in [11] clearly show that our
approach outperforms all 18 competitor SCC techniques in terms of uEMSC values on 10
out of 11 datasets. That is, we get uEMSC values closer to 1. Such good performances may
be due to the fact that all the considered competitor techniques are actually combinations of
a qualitative discovery step, to mine the structure of a (qualitative) model, followed by a
stochastic step where weights are assigned to the qualitative model to make it stochastic.
Instead, our approach is natively stochastic: we directly learn a stochastic model (a higher-
order Markov Chain). Another reason may be connected to the use of memory, which is
central in the analysis of stochastic models in several domains (see, e.g. [23, 6, 2]). In fact, it
allows to handle issues connected to the so-called phenomenon of path dependency [4, 26, 28].
Nevertheless, none of the considered competitor approaches is based explicitly on memory.
In the paper we also perform a preliminary study of the impact of noise in traces, showing a
decrease in performance linear in the amount of noise in the dataset, and sketch an extension
mitigating this effect.

Relation to BMQL (Behavioural Metrics and Quantitative Logics).

We see stochastic conformance checking as a possible application domain for behavioural
metrics and quantitative logics. Indeed, SCC aims at measuring the behavioural dissimilarities
between systems (a log and a model, two logs, two models). In particular, SCC aims at
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estimating such dissimilarities from observations of the system. However, the metrics used for
SCC are still somehow simple. In particular, the mentioned conformance meausre uEMSC
simply compares the likelihood of traces. In particular, uEMSC is computed by overlappings
of probability mass between the stochastic language of an event log and that of a model.
The uEMSC sums up the (positive) difference between the probability of each trace in the
log (the frequency of the trace in the log), and its probability in the stochastic process model
M [14] (the likelihood of the trace in the model):

uEMSC(L, M) =1 - Y max(L(c) — M(c),0)
o€l

where L(c) is the probability of the trace o in the log L, while M (o) is the probability of
the trace as computed by the model.

Studies of SCC involving actual behavioral metrics are still missing. We believe that this
is due to the fact that stochastic extensions to conformance checking are still quite recent.
The aim of this talk is to introduce the SCC problem to the community of behavioural
metrics and quantitative logics, so to foster SCC discussions and research in that direction.
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