
A Higher-Order Quantitative Logic
Giorgio Bacci # �

Aalborg University, Denmark

Rasmus Ejlers Møgelberg # �

IT University of Copenhagen, Denmark

Abstract
We present a sensitivity-aware lambda-calculus for programming in a category of complete 1-bounded
metric spaces and a quantitative higher-order logic for reasoning about programs. The calculus has a
monad for distributions as well as a guarded fixed point operator interpreted using the Banach fixed
point theorem. The logic is valued in the unit interval, and equality is interpreted as distance between
points. The logic has a recursion principle for distributions and a guarded recursion principle. We
show how these can be used in combination to reason about bisimilarity distance between Markov
processes. We also show how to encode a version of the Kantorovich distance in the logic which can
be proved equivalent to equality. This encoding can be used for reasoning using couplings.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Random walks and Markov chains; Theory of computation → Higher order logic

Keywords and phrases Sensitivity aware lambda calculus, quantitative logic, guarded recursion,
Markov processes, bisimilarity distance, couplings

Funding Rasmus Ejlers Møgelberg: This work was partially funded by the Independent Research
Fund Denmark, grant number 2032-00134B.

1 Introduction

Quantitative reasoning about programs is concerned with program distances. The goal is
often to establish upper bounds to program distances, reasoning about the sensitivity of
program outputs to program inputs, or to show convergence of sequences of programs. There
has been a lot of research recently in developing logics for quantitative reasoning, but much
of this has focused on developing program logics for imperative languages [5, 11, 1, 2] with
the aim of reasoning about increasingly advanced examples. Here we take a step back and
study the basic principles needed for quantitative reasoning, in particular, induction and
recursion principles.

At its core, quantitative logic is a logic of metric spaces. There are two approaches to
quantitative logic: One is Quantitative Equational Logic [9], a Boolean valued logic with
predicates of the form x =ϵ y, to be interpreted as ‘the distance between x and y is at
most ϵ’. Note that only equalities carry quantitative information. The other approach is to
work with a single equality predicate to be interpreted as the distance between elements.
The result is a logic valued in the positive reals in which 0 is true and the judgement of
implication is interpreted as the ≥ relation. Upper limits to distances between programs can
then be encoded as equality in contexts. For example c ⊢ t = u is interpreted as ‘the distance
between t and u is at most c’. The former approach seems to have received most attention,
although the latter has been the subject of some papers lately [3, 7]. In this talk we take the
latter approach, because we believe it is elegant and because it allows for a powerful guarded
recursion principle.

Here are two immediate observations: The first is that quantitative logic is naturally
an affine logic. The reason is that in order to have transitivity x = y, y = z ⊢ x = z, one
needs to interpret comma as sum, which then reduces transitivity to the triangle inequality.
Recall that in affine logic weakening is an admissible rule, but contraction is not. The second

mailto:grbacci@cs.aau.dk
https://orcid.org/0000-0003-4004-6049
mailto:mogel@itu.dk
https://orcid.org/0000-0003-0386-4376

2 A Higher-Order Quantitative Logic

observation is that the standard form of congruence (u = s ⊢ t[u/x] = t[s/x]) is not true.
Take for example t to be 2x. Since this term doubles the distances between its inputs, it
satisfies 2(x = y) ⊢ 2x = 2y. As a consequence, we need to account for sensitivity of terms
in variables to express congruence.

The talk therefore describes the following: A sensitivity-aware lambda calculus for terms
interpreted in a category of metric spaces, as well as a logic for reasoning about these terms.
The talk is based on the recent manuscript [4].

2 A Category of Metric Spaces

We work in a category CMet of complete 1-bounded metric spaces and non-expansive maps
(i.e., functions f that do not increase distances: d(f(x), f(y)) ≤ d(x, y)). The restriction of
1-boundedness means that the distance d(x, y) between any two elements in a metric space
is at most 1. One reason for this restriction is that it allows us to consider sets as discrete
metric spaces, where all distances are either 0 or 1. Any map out of a discrete space is
non-expansive, and as a consequence, one can give a recursion principle for discrete natural
numbers in CMet, and similarly for other recursive types.

The category CMet is complete, but more importantly, it carries a monoidal structure
⊗, where the underlying set of X ⊗ Y is the Cartesian product, and

dX⊗Y ((x, y), (x′, y′)) = min{d(x, x′) + d(y, y′), 1} .

This monoidal structure is moreover closed, meaning that the functor − ⊗X of forming the
monoidal product with X has a right adjoint X ⊸ −. The underlying set of X ⊸ Y is the
set of non-expansive functions from X to Y .

dX⊸Y (f, g) = sup
x∈X

d(f(x), d(g(x))) .

There is also an operation of scaling a metric space by a factor. The underlying set of cX is
X with metric

dcX(x, x′) = min{cd(x, x′), 1}

This operation is well-defined for c ∈ (0,∞) and can be extended to [0,∞] by defining 0X to
be the one point set for X ̸= ∅ and 0 · ∅ = ∅, and ∞X to be the discrete space on X. The
Banach fixed point theorem can then be expressed as follows.

▶ Theorem 1. Let X be a complete non-empty metric space, and let f : cX → X be non-
expansive for c < 1. Then f has a unique fixed point. Moreover, if g : (1 − c)Y ⊗ cX → X

is non-expansive, the map mapping y to the fixed point of g(y,−) is a non-expansive map
Y → X.

The above formulation of the Banach fixed point theorem is related to the type of a
guarded fixed point operator (▷X → X) → X, as modelled in the topos of trees [6], or using
ultra-metric spaces [8], where ▷ as here, is scaling by a factor c. To our knowledge, this has
not been considered for general metric spaces.

Finally, we consider the set DX of Radon probability measures on a metric space X.
This can be equipped with the Kantorovich metric to give a monad on CMet, called Radon
probability monad, with functor acting on morphisms as the pushforward measure along the
given function. The unit is the Dirac measure δX : X → DX, but rather than describing the
multiplication, we recall that this monad has an algebraic presentation as the free complete
interpolative barycentric algebra [9, 10].

Giorgio Bacci and Rasmus Ejlers Møgelberg 3

▶ Definition 2 (IB Algebra). A (complete) interpolative barycentric algebra is a complete
metric space X with morphisms ⊕p : pX ⊗ (1 − p)X → X, for all p ∈ (0, 1), such that

x⊕p x = x (idem)
x⊕p y = y ⊕1−p x (comm)

(x⊕p y) ⊕q z = x⊕pq (y ⊕ q−pq
1−pq

z) (assoc)

A homomorphism of IB algebras is a non-expansive map such that f(x⊕p y) = f(x) ⊕p f(y)
holds for all p ∈ (0, 1).

The axioms are those of barycentric algebras (a.k.a., convex algebras), axiomatizing probab-
ilistic choice through binary convex combination operations x⊕p y. For the Radon monad,
the operation ⊕p : pDX ⊗ (1 − p)DX → DX is simply the convex combination of probability
distributions. The fact that DX is the free complete IB algebra provides us with the following
principle of structural induction on Radon distributions on complete metric spaces.

▶ Proposition 3. If f : Γ ⊗ rX → Y (with r < ∞) and Y is an IB algebra, there exists
a unique f : Γ ⊗ rDX → Y which is a homomorphism in its second argument, satisfying
f = f ◦ (Γ ⊗ rδX).

The condition r < ∞ implies that f is continuous in the second argument, which is required
to guarantee the existence of the homomorphic extension f . We shall see that this principle
is the basis for our logical induction rule on Radon distributions over complete metric spaces.

3 A Sensitivity Aware λ-Calculus

We define a sensitivity-aware λ-calculus for programming in CMet. The syntax, summarised
below, is based on a λ-calculus with product, with a few modifications.

t, u ::= x | λx.t | tu | ⟨t, u⟩ | π1t | π2t

| (t, u) | let (x, y) = u in t
| δt | t⊕p u | let x = u in t
| fix x.t

There are two pairs constructors, ⟨t, u⟩ and (t, u), corresponding to the Cartesian and
monoidal product, respectively. The first one is eliminated using the projections πit, whereas
the second one is eliminated using case analysis (let (x, y) = u in t). The constructors δt and
t ⊕p u are used to form distributions by means of Dirac (delta) distributions and convex
combinations; Probability distributions are then sampled using (let x = u in t). fix x.t is the
“Banach” fixed point combinator.

Terms are typed with judgments of the form Γ ⊢ t : A, where Γ is a typing context and
A is a type. The types are as follows:

A,B ::= b | A×B | A p⊗qB | A⊸p B | DA

essentially, corresponding to the constructions of the previous section, where b ranges over a
collection of base types. These are interpreted in metric spaces as

JA×BK ≜ JAK × JBK , JDAK ≜ DJAK ,

JA p⊗qBK ≜ pJAK ⊗ qJBK , JA⊸p BK ≜ pJAK ⊸ JBK .

4 A Higher-Order Quantitative Logic

p ≥ 1
Γ, x :p A,Γ′ ⊢ x : A

Γ, x :p A ⊢ t : B
Γ ⊢ λx.t : A⊸p B

Γ ⊢ t : A⊸p B Γ′ ⊢ u : A
Γ + pΓ′ ⊢ t u : B

Γ ⊢ t : A Γ ⊢ u : B
Γ ⊢ ⟨t, u⟩ : A×B

Γ ⊢ t : A1 ×A2
Γ ⊢ πit : Ai

Γ ⊢ t : A Γ′ ⊢ u : B
pΓ + qΓ′ + Γ′′ ⊢ (t, u) : A p⊗qB

Γ, x :p A, y :q B ⊢ t : C Γ′ ⊢ u : A p⊗qB

Γ + Γ′ ⊢ let (x, y) = u in t : C

Γ ⊢ t : A
Γ ⊢ δt : DA

Γ ⊢ t : DA Γ′ ⊢ u : DA p ∈ (0, 1)
pΓ + (1 − p)Γ′ ⊢ t⊕p u : DA

Γ, x :r A ⊢ t : E Γ′ ⊢ u : DA E IB algebra r < ∞
Γ + rΓ′ ⊢ let x = u in t : E

(1 − p)Γ, x :p A ⊢ t : A p < 1
Γ ⊢ fix x.t : A

Figure 1 Typing rules.

Although rescaling of metric spaces played a central role in the previous section, it is not
a primitive type former in the calculus. Instead, it is part of the tensor type A p⊗qB and
function type A⊸p B constructors. This choice was made to minimize the bookkeeping
necessary for scalars in terms.

The sensitivity of each variable used in a term is tracked by sensitivity annotations of the
form x :p A in typing contexts Γ. A binding x :p A in a context Γ means that the variable x
has type A under Γ and that terms typed under Γ are p-sensitive with respect to x. In this
sense, the language is strongly related to Fuzz [12]. Formally, typing contexts are formed
according to the rules below, with expected interpretation in metric spaces:

⟨⟩ :: ctx ,
Γ :: ctx x /∈ Γ p ∈ [0,∞]

Γ, x :p A :: ctx ; J⟨⟩K ≜ 1 , JΓ, x :p AK ≜ JΓK ⊗ pJAK .

Terms in context then define non-expansive maps

JΓ ⊢ t : AK : JΓK → JAK .

The typing rules shown in Figure 1 reflect the semantic results mentioned above, where
scaling and sum of contexts are defined using point-wise scaling and sum of sensitivity factors.
Observe that Γ + Γ′ is only defined when Γ and Γ′ agree on the order and the types of all
variable bindings —for example, (x :p A, y :q B) + (y :q B, x :p A) is not defined.

The rule for variable introduction reflects that projection can be given any Lipschitz
factor p ≥ 1. We allow all such p, and not just p = 1, to incorporate weakening directly into
the typing rules. In the rule for lambda abstraction, the sensitivity on the function type
matches that of the variable to be bound. Indeed, a term of type A⊸p B denotes a function
with Lipschitz factor p. When applying such a term to an argument in the rule for function
application, the sensitivity factor for the argument must be scaled accordingly. In the rule for
tensor introduction, Γ′′ is used merely to incorporate weakening in the rule, also in the case
where both p and q are 0. The use of Γ and Γ′ is more interesting: they are combined linearly
in the conclusion because so are the distances in the tensor type. Compare this to the rules
for Cartesian product, where the context in the conclusion is required to be the same as in
the premise. The elimination rule for D uses the judgment of a type being an IB algebra
and reflects Proposition 3. The type of the fixed point combinator reflects Theorem 1.

Giorgio Bacci and Rasmus Ejlers Møgelberg 5

4 The logic

We next define a logic for reasoning about terms of the language described above. Recall
that this logic should be real valued and equality should be interpreted as distance. Since
the metric spaces considered are 1-bounded, we take as semantic universe of propositions the
closed unit interval [0, 1]. Since this is an object of CMet, we will use the lambda calculus
to specify the notion of well-formed proposition. Simply add a type Prop to the language
interpreted as [0, 1] as well as operations for forming propositions such as

Γ ⊢ t : A Γ′ ⊢ s : A
Γ + Γ′ ⊢ t = s : Prop

Γ ⊢ φ : Prop Γ′ ⊢ ψ : Prop
Γ + Γ′ ⊢ φ • ψ : Prop

Γ ⊢ φ : Prop Γ′ ⊢ ψ : Prop
Γ + Γ′ ⊢ φ−• ψ : Prop

where

Jt = sK = d(JtK, JsK) , Jφ • ψK = min{JφK + JψK, 1} , Jφ−• ψK = max{JφK − JψK, 0} ,

plus rules for scaling propositions, disjunction, conjunction, and universal as well as existential
quantification.

The logical judgement ∆ | Ψ ⊢ ϕ states that the sequence of logical formulas Ψ implies ϕ,
presupposing that Ψ and ϕ are well-formed (sequences of) terms of type Prop in context ∆.
Here ∆ is assumed to be a context in which all sensitivities are set to ∞. The reason for this
is that sensitivity factors for terms variables in logical predicates are irrelevant for logical
judgments, and keeping track of these in logical judgements adds unnecessary complications
to the logic. Note that, ∞ is the most general sensitivity annotation possible: If ∆ ⊢ t : A
then also ∆′ ⊢ t : A where ∆′ is obtained from ∆ by setting all sensitivity annotations
to ∞. In logical judgements, we use the notation ∆, x : A as shorthand for the rigorous
∆, x :∞ A. (This notation is justified by the fact that discrete contexts act essentially as
ordinary set-contexts).

Key rules include those for equality

∆ ⊢ t : A
∆ | Ψ ⊢ t = t

∆, x :p A ⊢ φ : Prop ∆ ⊢ s, t : A ∆ | Ψ ⊢ φ[t/x] ∆ | Ψ′ ⊢ p(t = s)
∆ | Ψ,Ψ′ ⊢ φ[s/x]

of which the second is essentially due to Dagnino and Pasquali [7]. We observe that these are
strong enough to prove that equality is a congruence relation, in the sensitivity-aware sense.

Another key rule is the induction rule for distributions

∆ ⊢ t : DA
∆, x :r DA ⊢ φ : Prop

∆, y : A | Ψ ⊢ φ[δy/x]
∆, µ : DA, ν : DA | pφ[µ/x], (1 − p)φ[ν/x] ⊢ φ[µ⊕p ν/x] r < ∞

∆ | Ψ ⊢ φ[t/x]

Intuitively, the rule states that to prove that φ[t/x] holds for any Radon distribution t : DA,
it suffices to show the proposition holds for t generic Dirac distributions (the base case), and
that property is preserved by convex combinations of distributions (the inductive step). This
rule is sound by Proposition 3 as Prop is an IB algebra.

Finally, the logic contains a guarded recursion principle

∆ | (1 − p)Ψ, pφ ⊢ φ p ∈ (0, 1)
∆ | Ψ ⊢ φ

Note the similarity between this rule and the typing rule for fixed points.

6 A Higher-Order Quantitative Logic

5 Examples

We start by showing how the fixed point combinator can be used to define recursive Markov
processes such as one satisfying

m ≡ a; (δ(m) ⊕ 1
3
δ(z)) (1)

The syntax is to be read as ‘emit label a, then continue as m with probability 1
3 and as

process z with probability 2
3 .

Following [13], Markov processes of this type coalgebras of type S → A⊗cD(S) in CMet,
where c ∈ (0, 1] is some discount factor and A a metric space of labels. The behaviour
of a Markov process can be abstractly characterised as an element of the final coalgebra,
corresponding to the coinductive solution Pc to the functorial equation Pc

∼= A ⊗ cD(Pc).
The behavioural distance is just the distance in Pc between behaviours [14].

In order to program with Pc we add to the calculus the basic types Pc and A and terms

ufld : Pc ⊸1 A 1⊗cD(Pc) fld : A 1⊗cD(Pc) ⊸1 Pc

We will write a;m for fld (a,m).
The recursive definition (1) is productive in the sense that it only calls itself with

probability 1
3 . Therefore, it can be defined as a term of type P1. Precisely, because

z : 2
3 P1,m : 1

3 P1 ⊢ a; (δ(m) ⊕ 1
3
δ(z)) : P1

we can define z :1 P1 ⊢ m : P1 as m ≜ fix m.a; (δ(m) ⊕ 1
3
δ(z)).

Next we consider a simple example of reasoning in our logic. Consider the two recursive
definitions of Markov processes

m ≡ a; (δ(m) ⊕ 1
3
δ(z)) n ≡ a; (δ(n) ⊕ 1

2
δ(z))

which can both be defined using the fixed point operator of the language. We show that the
distance between these is at most 1

4 , which can be expressed in our logic as

1
4ff ⊢ m = n

This is done by guarded recursion by showing

1
3(m = n),

(
2
3 · 1

4

)
ff ⊢ m = n

Since

m ≡ a; (δ(m) ⊕ 1
3

(δ(z) ⊕ 1
4
δ(z))) n ≡ a; (δ(n) ⊕ 1

3
(δ(n) ⊕ 1

4
δ(z)))

by the congruence property, this boils down to showing

1
3(m = n),

(
2
3 · 1

4

)
ff ⊢ 1

3(m = n) • 2
3

(
1
4(n = z) • 3

4(z = z)
)

which is easy.

Giorgio Bacci and Rasmus Ejlers Møgelberg 7

5.1 Internalising the Kantorovich Distance
If ϕ : A⊸Prop is a predicate with sensitivity 1, and µ : DA we can consider Dϕ(µ) : D(Prop),
which is essentially a random variable. We can compute the mean of this internally in the
language as

Ex∼µ[ϕ] ≜ let x = µ in ϕ(x)

The use of the word ‘mean’ is justified by the following equations

Ex∼δ(y)[ϕ] ≡ ϕ(y)
Ex∼µ⊕pµ′ [ϕ] ≡ p(Ex∼µ[ϕ]) • (1 − p)(Ex∼µ′ [ϕ])

If ω : D(A 1⊗1A), the predicate of ω being a coupling between distributions µ and ν can be
expressed internally in the logic as

ω ∈ Cpl(µ, ν) ≜ (D(π1)ω = µ) • (D(π2)ω = ν)

Note that this is a quantitative statement, but it is globally true (i.e., tt ⊢ ω ∈ Cpl(µ, ν)) iff
ω is a coupling in the usual sense. We can now define the Kantorovich distance as

K(µ, ν) ≜ ∃ω.ω ∈ Cpl(µ, ν) • E(x,y)∼ω[x=y]

▶ Theorem 4. The predicates K(µ, ν) and µ = ν are equivalent.

In the talk, we will sketch how this can be used to reason about programs by use of the
coupling method in our logic. The concrete example is a random walk on an N -dimensional
hypercube Pos ≜ BoolN , where the distance between p, q ∈ Pos is 1

N times the number of
positions where p and q differ. We show that

N−1
N+1(p = q) ⊢ hwalk p = hwalk q (2)

where hwalk : Pos ⊸1 D(Pos) is one step of the random walk. By the Banach fixed point
theorem, this implies that the random walk converges to a fixed distribution, regardless of
the initial position.

Showing this requires relating the random choices made in hwalk p to those of hwalk q by
means of a coupling. This is done by constructing a term ω : D(Pos1⊗1Pos) and showing
that

N−1
N+1(p = q) ⊢ ∃ω.ω ∈ Cpl(hwalk p, hwalk q) • E(x,y)∼ω[x=y]

which by Theorem 4 implies (2).

The manuscript [4] shows the following further examples: An upper bound on the distance
between processes describing a biased coin toss and a fair one, equivalence of bisimulation
and equality for a type of Markov processes with a discounting factor below 1, as well as
convergence for a temporal difference learning algorithm.

References
1 Alejandro Aguirre, Gilles Barthe, Justin Hsu, Benjamin Lucien Kaminski, Joost-Pieter Katoen,

and Christoph Matheja. A pre-expectation calculus for probabilistic sensitivity. Proc. ACM
Program. Lang., 5(POPL):1–28, 2021. doi:10.1145/3434333.

https://doi.org/10.1145/3434333

8 A Higher-Order Quantitative Logic

2 Martin Avanzini, Gilles Barthe, Davide Davoli, and Benjamin Grégoire. A quantitative
probabilistic relational hoare logic. Proc. ACM Program. Lang., 9(POPL):1167–1195, 2025.
doi:10.1145/3704876.

3 Giorgio Bacci, Radu Mardare, Prakash Panangaden, and Gordon D. Plotkin. Propositional
logics for the lawvere quantale. In Marie Kerjean and Paul Blain Levy, editors, Proceedings
of the 39th Conference on the Mathematical Foundations of Programming Semantics, MFPS
XXXIX, Indiana University, Bloomington, IN, USA, June 21-23, 2023, volume 3 of EPTICS.
EpiSciences, 2023. URL: https://doi.org/10.46298/entics.12292, doi:10.46298/ENTICS.
12292.

4 Giorgio Bacci and Rasmus Ejlers Møgelberg. Induction and recursion principles in a higher-
order quantitative logic. CoRR, abs/2501.18275, 2025. URL: https://doi.org/10.48550/
arXiv.2501.18275, arXiv:2501.18275, doi:10.48550/ARXIV.2501.18275.

5 Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. Formal certification of
code-based cryptographic proofs. In Zhong Shao and Benjamin C. Pierce, editors, Proceedings
of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages 90–101. ACM, 2009. doi:
10.1145/1480881.1480894.

6 Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First
steps in synthetic guarded domain theory: step-indexing in the topos of trees. Log. Methods
Comput. Sci., 8(4), 2012. doi:10.2168/LMCS-8(4:1)2012.

7 Francesco Dagnino and Fabio Pasquali. Logical foundations of quantitative equality. In
Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE Symposium on
Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 16:1–16:13. ACM, 2022.
doi:10.1145/3531130.3533337.

8 Erik P. de Vink and Jan J. M. M. Rutten. Bisimulation for probabilistic transition
systems: A coalgebraic approach. Theor. Comput. Sci., 221(1-2):271–293, 1999. doi:
10.1016/S0304-3975(99)00035-3.

9 Radu Mardare, Prakash Panangaden, and Gordon D. Plotkin. Quantitative algebraic reasoning.
In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY,
USA, July 5-8, 2016, pages 700–709. ACM, 2016. doi:10.1145/2933575.2934518.

10 Radu Mardare, Prakash Panangaden, and Gordon D. Plotkin. Free complete wasserstein
algebras. Log. Methods Comput. Sci., 14(3), 2018. doi:10.23638/LMCS-14(3:19)2018.

11 Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.
Reasoning about recursive probabilistic programs. In Martin Grohe, Eric Koskinen, and
Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 672–681. ACM,
2016. doi:10.1145/2933575.2935317.

12 Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger: a calculus for
differential privacy. In Paul Hudak and Stephanie Weirich, editors, Proceeding of the 15th
ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore,
Maryland, USA, September 27-29, 2010, pages 157–168. ACM, 2010. doi:10.1145/1863543.
1863568.

13 Franck van Breugel. A behavioural pseudometric for metric labelled transition systems. In
CONCUR, volume 3653 of Lecture Notes in Computer Science, pages 141–155. Springer, 2005.

14 Franck van Breugel, Claudio Hermida, Michael Makkai, and James Worrell. An accessible
approach to behavioural pseudometrics. In ICALP, volume 3580 of Lecture Notes in Computer
Science, pages 1018–1030. Springer, 2005.

https://doi.org/10.1145/3704876
https://doi.org/10.46298/entics.12292
https://doi.org/10.46298/ENTICS.12292
https://doi.org/10.46298/ENTICS.12292
https://doi.org/10.48550/arXiv.2501.18275
https://doi.org/10.48550/arXiv.2501.18275
https://arxiv.org/abs/2501.18275
https://doi.org/10.48550/ARXIV.2501.18275
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1145/3531130.3533337
https://doi.org/10.1016/S0304-3975(99)00035-3
https://doi.org/10.1016/S0304-3975(99)00035-3
https://doi.org/10.1145/2933575.2934518
https://doi.org/10.23638/LMCS-14(3:19)2018
https://doi.org/10.1145/2933575.2935317
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568

	1 Introduction
	2 A Category of Metric Spaces
	3 A Sensitivity Aware -Calculus
	4 The logic
	5 Examples
	5.1 Internalising the Kantorovich Distance

