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Abstract
We propose a framework of universal algebra for specifying graded monads on the category of
pseudometric spaces and nonexpansive maps with grades in the additive preordered monoid of
extended positive reals. The ensuing concept of graded quantitative theory combines ideas from the
work on universal algebra over relational Horn models and the graded algebraic theories of Kura. Our
key motivation is to develop a presentation of the so-called neighborhood monad that features in the
denotational semantics of Numerical Fuzz, a linear type system for tracking bounds on the rounding
error incurred in numerical programs. In this direction, we introduce the graded quantitative theory
of neighbors and prove that its associated variety admits free algebras, which enables us to associate
a graded monad with the theory. We leave it open for future work to establish the precise relation
between the neighborhood monad and our graded quantitative theory of neighbors.
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1 Introduction

When writing numerical programs, we would ideally wish to compute over the reals. Since
this is technically not feasible, most programs utilize floating point numbers, a discrete
finitary approximation of the reals. A central task for numerical analysis is to develop
methods that bound the difference between ideal computations (i.e. true arithmetic) and the
approximate computations carried out by computer programs (i.e. floating point arithmetic).
This difference is known as round-off error.
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2 Towards an Axiomatisation of the Neighborhood Monad

Numerical Fuzz [14] is a bounded linear type system capable of tracking round-off error.
This is achieved by incorporating a graded monadic type Tqnum where the grade q is a
point in the preordered monoid formed by the extended non-negative reals under addition
encoding the greatest possible round-off error. That is, for a program e of type Tqnum, the
difference evaluating e over the reals and the floats is bounded above by q.

Monadic types are typically interpreted as monads in their denotational semantics. Graded
monads [11] refine this concept by a stratification of the monad structure dictated by a small
monoidal category. In the denotational semantics of Numerical Fuzz, the monadic type T is
modeled by the graded neighborhood monad, where grades are extended non-negative reals.

In the algebraic effects literature, ungraded computational effects can be presented
by corresponding algebraic theories. Effects are then combined through tensoring. This
construction provides a well established framework for combining algebraic effects.

Much like finitary monads on Set correspond to varieties of finitary algebras [12], graded
monads on Set admit presentations by means of graded equational theories [16]. However, for
base categories beyond Set, there does not seem to be a corresponding framework of graded
universal algebra except in the case of grades in the additive monoid of natural numbers [8].
We aim to partially fill this gap by describing the first concept of an R-graded quantitative
theory, where R denotes the preordered additive monoid of the extended non-negative reals.
In future work, we hope to systematically combine the neighborhood monad with effects
using this new syntactic technology. Existing work has done this on an ad-hoc basis for
specific effects, which we summarize here for purpose of illustration:
1. The maybe monad for modeling so-called denormal computations. Denormal computation

occurs when a computation falls below the least representable float in hardware.
2. The powerset monad for non-deterministic rounding. This can occur when the IEEE

floating-point standard leaves the result of a floating-point operation underspecified.
Concretely, this occurs in the case of ties. For example, when the round-to-nearest float
mode is set and the ideal computation sits exactly at the midpoint between nearby floats.

3. The finite distribution monad for randomized rounding, which can model rounding
occuring outside of the IEEE floating-point standard. For example, randomized rounding
is useful in the design of various approximation algorithms.

Together, these extensions enable Numerical Fuzz to more accurately and conveniently
model real-world computation. We hasten to reemphasize that, importantly, a generalized
framework for composing, e.g. the neighborhood monad with computational effects, seems
to be missing. We hope that our graded quantitative theories might aid in this direction.

Inspired by the success of algebraic effects, we are interested in providing a similar algebraic
recipe for combining the graded neighborhood monad with arbitrary effects. Towards this
goal, we develop the first ingredient in our recipe: a graded quantitative algebraic theory of
neighbors. It remains an open problem to determine whether our theory yields a presentation
of the neighborhood monad in the sense that the corresponding variety of graded algebras
attached to our theory coincides with the algebras of the neighborhood monad.

Related work. The neighborhood monad employed in this work was introduced by
Kellison and Hsu [14], along with several variants that incorporate specific choices of a monad
modelling effects [23,24]. Quantitative algebra [17] is an active area of research [1,3–6,18,20,21]
aimed at extending the techniques of universal algebra to the study of algebraic structures
over metric spaces. Quantitative algebra has been extended to allow for algebraic reasoning
over categories of relational Horn models [9], as well as algebras with operations that fail to be
nonexpansive [22]. What seems to be missing in this setting is an account of graded algebraic
reasoning, i.e. a counterpart of graded monads [11,25] on metric spaces: we are only aware of
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the notion of graded quantitative theories of Ford [8] where grading is confined to the additive
monoid of natural numbers (also see [10]). With that being said, equational presentations of
graded monads on Set have been well developed at various levels of generality, e.g. [13,16,19].

2 Background

We briefly review (extended) pseudometric spaces and graded monads [11,25].

2.1 Extended Pseudometric Spaces
We denote by R∞ the set of extended non-negative reals, i.e. R∞ := R≥0 ⊔ {∞}, and
we extend the usual addition and ordering on the reals to R∞ by defining r + ∞ = ∞
and r ≤ ∞ for all r ∈ R∞. An extended pseudometric space is a set X equipped with a
map d : X × X → R∞ such that

d(x, y) = d(y, x), d(x, z) ≤ d(x, y) + d(y, z), and d(x, x) = 0

for all x, y, z ∈ X. That is, an extended pseudometric space is a carrier set together with an
assignment of a distance d(x, y) ∈ R∞ to each pair of points described axiomatically as above.
We also write X |= x =r y to indicate that d(x, y) ≤ r. A non-expansive map from (X, dX)
to (Y, dY ) is a map f : X → Y such that dY (f(x), f(x′)) ≤ dX(x, x′). We write pMet for
the category of extended pseudometric spaces and non-expansive maps. For brevity, we
omit the word extended and refer to these simply as pseudometric spaces. We sometimes
notationally conflate a pseudometric space with its carrier, i.e. write X instead of (X, dX).
Given r ∈ R, we write 2r for the pseudometric on {0, 1} with d(0, 1) = r.

The category pMet is locally ω1-presentable [2] as a closed category in the sense of
Kelly [15]. This means that the full subcategory Presω1(pMet) of pMet spanned by the
internally countably presentable spaces, i.e. spaces X such that [X, −] preserves ω1-filtered
colimits, is essentially small and every space is an ω1-filtered colimit of such spaces. Here,
the internal hom [X, Y ] from X to Y equips pMet(X, Y ) with the supremum metric:

d[X,Y ](f, g) = sup
x∈X

dY (f(x), g(x)).

See, e.g., Ford et al. [9, Section 3] for details.

2.2 Graded Monads
Fix a small strict monoidal category M with tensor bifunctor ⊗ : M × M → M and unit
object I. An M-graded monad on a category A is a lax monoidal functor M → [A , A ],
where [A , A ] is the monoidal category of endofunctors on A , where the tensor is composition
and the unit object is the identity functor.

Hereafter, we work exclusively with R-graded monads where R is the preordered mon-
oid (R∞, +, 0, ≤), viewed as a (small and strict) monoidal category. Slightly overloading
notation, we write q ≤ r for the unique morphism q → r whenever q ≤ r holds in R.
Unfolding definitions, an R-graded monad on A is a functor M : R → [A , A ], yielding a
family of endofunctors (Mr : A → A )r∈R, equipped with natural transformations

η : IdA → M0 (the unit) and µq,r : MqMr → Mq+r (the multiplication) (q, r ∈ R∞)

These data are subject to axioms which resemble those of ordinary monads, up to insertion
of grades. In particular, for all q, r, s ∈ R∞ we have the unit laws and associativity laws

µq,0 · MqηX = idM0X = µ0,q · ηMqX and µq,r+s · Mqµr,s
X = µq+r,s

X · µq,r
MsX
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Algebras of a graded monad. Graded monads enjoy a compatible notion of graded
algebra [11], generalizing the Eilenberg-Moore algebras of ordinary monads. Fix an R-
graded monad M on a category A . An Eilenberg-Moore algebra of M (or an M-algebra) is a
functor A : R → A (the carrier) equipped with a family of A -morphisms

aq,r : MqAr → Aq+r (the structure) (q, r ∈ R∞)

This data is subject to axioms which are, again, similar to those of regular monad algebras
with added indices: For all q, r, s ∈ R∞ we require

a0,r · ηAr
= idAr

and aq+r,s · µq,r
As

= aq,r+s · Mqar,s

Thus, the carrier of an M-algebra consists of an R∞-indexed family of objects Ar ∈ A with
a specified morphism A(q ≤ r) : Aq → Ar for all q, r ∈ R∞ with q ≤ r. A homomorphism
from A to B is a natural transformation h : A → B such that

br,s · Mrhs = hr+s · ar,s

for all r, s ∈ R∞. We write EM(M) for the category of M-algebras and their homomorphisms.
The assignment of an M-algebra A to its 0-part A0 is the object-part of a forgetful functor
V : EM(M) → A which sends a homomorphism h : A → B to h0.

3 The Neighborhood Monad

We briefly gather the necessary background on the neighborhood monad [14, Section 4.2].
Given X ∈ pMet and r ∈ R∞, write

TrX = {(a, b) ∈ X × X | dX(a, b) ≤ r}

for the set of r-neighbors. Note that T∞X = X × X and TqX ⊆ TrX if q ≤ r. Then TrX ad-
mits the structure of a pseudometric space with the distance map defined by d((a, b), (a′, b′)) :=
dX(a, a′). Indeed, one readily verifies symmetry, reflexivity, and the triangle inequality by
exploiting the corresponding laws of dX .

The assignment X 7→ TrX is the object-part of a functor Tr : pMet → pMet with the
action on a non-expansive map f : X → Y defined by

Trf : TrX → TrY (a, b) 7→ (f(a), f(b)).

Then Trf is defined since (a, b) ∈ TrX implies dY (f(a), f(b)) ≤ d(a, b) ≤ r because f is
non-expansive. Moreover, Trf is non-expansive, as

dTrY (Trf(a, b), Trf(c, d)) = dY (f(a), f(c)) ≤ dX(a, c) = dTrX((a, b), (c, d)).

Kellison and Hsu [14] explain that the family (Tr)r∈R∞ carries the structure of an R-graded
monad, the so-called neighborhood monad, which we recall in the following.

▶ Definition 3.1. The neighborhood monad (notation: Nb) is the R-graded monad obtained
by equipping the family of functors (Tr : pMet → pMet)r∈R∞ with the unit η : X → T0X

given by the assignment x 7→ (x, x) and multiplication defined for all q, r ∈ R∞ by

µq,r : TqTrX → Tq+rX ((a, b), (c, d)) 7→ (a, d).



M. Fan, C. Ford, J. Forster, J. H. Garðarsson, J. Hsu, and J. Richards 5

Note that TrX and [2r, X] have isomorphic underlying sets but carry distinct pseudometrics.
Algebras of the neighborhood monad. An algebra of the neighborhood monad is of

a functor A : R → pMet and a family of non-expansive maps ar,s : TrAs → Ar+s, natural in
r, s, satisfying a0,r(e, e) = e for all e ∈ Ar and

ar,s+t(hs,t(a, b), hs,t(c, d)) = ar+s,t(a, d)

for a, b, c, d ∈ At with d(a, b) ≤ s, d(c, d) ≤ s and d(a, c) ≤ r.
These identities closely resemble the axioms of the rectangular bands of Clifford [7]; we

leave it to future work to better understand the relationship with rectangular bands.

4 Graded Quantitative Theories

We proceed to describe our notion of an R-graded quantitative theory, which combines ideas
from the finitary relational algebraic theories of Ford et al. [9] with the graded algebraic
theories of Kura [16]. Crucially, we employ finite pseudometric spaces as the arities of
operations. In this direction, we pick a small skeleton Pω

∼= Presω(pMet) of arities. For
convenience, we assume that each arity is carried by a finite cardinal.

▶ Definition 4.1. An R-graded signature consists of a set Σ of operation symbols together
with the assignment of a grade g(σ) ∈ R and an arity ar(σ) ∈ Pω to each σ ∈ Σ. An
operation σ is n-ary if | ar(σ)| = [n]. A Σ-algebra is then a functor A : R → pMet equipped
with a family of nonexpansive maps σA = (σA

r : [ar(σ), Ar] → Ag(σ)+r)r∈R, natural in r, for
each σ ∈ Σ. A homomorphism from A to B is a natural transformation h : A → B such that

hg(σ)+q · σA
q = σB

q (hq · −)

for all q ∈ [0, ∞], where hr : Ar → Br denotes the component of h at r ∈ R. We write Alg(Σ)
for the category of Σ-algebras and their homomorphisms.

▶ Example 4.2. Let ΣNb be the signature with an operation symbol ⋆r of arity 2r and
grade r for every r ∈ [0, ∞]. Then a ΣNb-algebra is a functor A : R → pMet together with a
nonexpansive assignment of a point (a ⋆q

r b) ∈ Ar+q to each pair of r-neighbors in Aq.

Fix a signature Σ. We now describe a syntax which we use to specify full subcategories
of Alg(Σ). We follow Kura [16] and employ a coercion construct cq≤r (−) to ‘upgrade’ terms
along a morphism q ≤ r in R. For each r ∈ [0, ∞], the set TΣ,r(X) of Σ-terms of uniform
depth r (with variables in X) is inductively generated as follows:
1. x ∈ TΣ,0(X) for each variable x ∈ X;
2. if t1, . . . , tn ∈ TΣ,q(X) and σ ∈ Σ with ar(σ) = [n], then σ(t1, . . . , tn) ∈ TΣ,g(σ)+q(X);
3. if t ∈ TΣ,qX and q ≤ r in [0, ∞], then cq≤r(t) ∈ TΣ,r(X).

▶ Example 4.3. For the signature Σ of Example 4.2, we have that x ⋆r y is a term of uniform
depth r for every pair of variables x, y ∈ X and (x ⋆r y) ⋆s(x ⋆r y) is a Σ-term of uniform
depth s + r. The expression (x ⋆1 y) ⋆0(x ⋆2 y) is not a uniform-depth term.

Given a map ar(σ) → TΣ,r(X), we also write σ(t) = σ(ti)i∈ar(σ) if t(i) = ti for all i ∈ ar(σ).
In this notation, we define the interpretation of terms in graded algebras as follows.

▶ Definition 4.4. A valuation of variables in a Σ-algebra A is a nonexpansive map e : X → Aq.
Every valuation extends to a family of partial maps (e#

r : TΣ,r(X) → Aq+r)r∈R defined
recursively on the structure of terms as follows:
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1. e#
0 (x) = e(x) for every variable x ∈ X;

2. e#
g(σ)+r(σ(t)) is defined for σ ∈ Σ and t : ar(σ) → TΣ,r(X) iff e#

r (t(i)) is defined for all i ∈
ar(σ) and e#

r · t : ar(σ) → Aq+r is nonexpansive. In this case, e#
g(σ)+r(σ(t)) = σA

q+r(e#
r (t)).

3. e#
r (cu≤v(t)) is defined iff e#

u (t) is defined, and e#
r (cu≤v(t)) = A(q + u ≤ q + v)(e#

u (t)).

▶ Example 4.5. Let us consider the signature of Example 4.2 once again. Given a valu-
ation e : X → Aq, the term x ⋆r y is evaluated by the partial map e#

r : TΣ,r(X) → Aq+r. Un-
winding definitions, we have that e#

r (x1 ⋆r x2) is defined precisely if e#
0 (xi) = e(xi) is defined

for i ∈ {0, 1} (this is automatic since x1, x2 are variables) and dAq
(e(x1), e(x2)) ≤ dar(σ)(1, 2).

▶ Definition 4.6. A graded quantitative equality is an expression of the form Γ ⊢r s =u t

where Γ ∈ pMet (the context) and s, t ∈ TΣ,r(Γ). A Σ-algebra A satisfies Γ ⊢r s =u t if, for
every valuation e : Γ → Aq, we have e#

r (s) and e#
r (t) are defined, and dAq+r (e#

r (s), e#
r (t)) ≤ u.

A graded (qualitative) equality has the form Γ ⊢r s = t and is satisfied by A if for every
valuation e : Γ → Aq the maps e#

r (s) and e#
r (t) are defined and e#

r (s) = e#
r (t). A graded

quantitative theory is a set T of graded quantitative and qualitative equalities (the axioms).
A T-model is a Σ-algebra which satisfies every axiom of T. We write Alg(T) for the full
subcategory of Alg(Σ) spanned by all T-models.

Graded quantitative theories are meant to be a formalism for generating R-graded monads
on the category pMet. In order to make this precise, first note the assignment of a T-
algebra A : R → pMet to A0 is the object-part of a forgetful functor U : Alg(T) → pMet
with the action on a homomorphism h : A → B defined by U(h) = h0 : A0 → B0.

We leave it as an open problem to determine whether every graded quantitative theory T
induces a graded monad MT such that Alg(T) ∼= EM(MT) (as concrete categories), i.e., the
triangle below commutes:

Alg(T) EM(Nb)

pMet

∼=

U V

We conjecture that there is a positive resolution to this problem (cf. [9, 16]). On the other
hand, we expect that a full characterization of the graded monads captured by our graded
quantitative will be subtle because a characterization of the monads captured by ungraded
basic quantitative theories [17] remains open [1, 3].

5 The Graded Quantitative Theory of Neighbors

We introduce the graded theory of neighbors inspired by the neighborhood monad. For
ease of notation, we employ (finite) sets of expressions of the form s =r t as the contexts
of axioms. These fully specifies a pseudometric space because pMet is a full epi-reflective
subcategory of the category of relational structures and relation-preserving maps over the
signature {=r | r ∈ R∞} [9]. We blur the distinction between (finite) sets of relations and
their reflections as (finite) spaces in pMet.

▶ Definition 5.1. The graded theory of neighborhoods is the R-graded quantitative theory TNb
whose signature consists of an operation ⋆r of arity 2r and grade r for each r ∈ [0, ∞]. These
operations are subject to axiom

⊢0 a = a ⋆0 a (idempotency) and {a =r b} ⊢s cr≤s(a ⋆r b) = a ⋆s b (merge)
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(eliding the discrete context) and the quantitative band laws expressed as follows:

{a =r b, c =r d, a =s c} ⊢r+s (a ⋆r b) ⋆s(c ⋆r d) = a ⋆r+s d (band decomposition)
{a =r b, c =r d, a =s c} ⊢r a ⋆r b =s c ⋆r d (band distance)

Axioms (merge), (band distance), and (band decomposition) are axiom schema.

The terminology ‘quantitative band laws’ stems from the rectangular bands of Clifford [7].
Let X be a pseudometric space. The assignment r 7→ TrX is the object-part of a

functor F (X) : R → pMet with the action on a morphism q ≤ r defined by the inclusion

F (q ≤ r) := TqX ↪→ TrX.

Indeed, preservation of identity morphisms and composition is clear, and F (q ≤ r) is defined
because, for all x, y ∈ X, we have d(a, b) ≤ q implies d(a, b) ≤ r for all r ≥ q. Note that F (X)
carries the structure of a TNb-algebra (see Example 4.2) with the operations

⋆q
r : [2r, TqX] → Tr+qX, ⋆q

r(f) := ⟨π1 · f, π2 · f⟩.

That is, for each pair of r-neighbors in TqX we have (a, b) ⋆q
r(c, d) := (a, d). These operations

are nonexpansive being the composition of nonexpansive maps.

▶ Proposition 5.2. F (X) is a TNb-algebra. In fact, F (X) is the free TNb-algebra with
respect to the universal morphism η : X → (F (X))0 defined by the assignment a 7→ (a, a).

It follows from Proposition 5.2 that the assignment X 7→ F (X) is the object-part of a
functor F : pMet → Alg(TNb), and F is a left adjoint of the forgetful functor U .

Just as every monad arises from an adjunction, Fujii et al. [11, Section 3] explain that
every R-graded monad on a category A is induced by an adjunction L ⊣ R : B → A and a
strict action α : R × B → B with underlying functors MrX := R(α(r, LX)). We apply this
to the adjunction F ⊣ U and the action given by equipping the functor α(r, A)(q) = Ar+q

with the operations (⋆u
q )(f : 2q → Ar+u) = ⋆r+u

q (f). This yields an R-graded monad MTNb

with MrX given by the rth-component of the free TNb-algebra.

6 Concluding Remarks

We have introduced a concept of graded quantitative theory for generating R-graded monads
on the category pMet of pseudometric spaces and nonexpansive maps. The core concepts of
our framework have been illustrated through the development of our graded quantitative
theory of neighbors TNb. Our main result establishes the existence of free algebras in Alg(TNb),
which enabled us to associate an R-graded monad MTNb with TNb. While our primary
motivation was to develop a new perspective on the neighborhood monad, we intend to
further develop our general framework in future work. In particular, graded quantitative
theories could be employed to characterize general properties (e.g. enrichment or accessibility
rank) of R-graded monads on pMet purely in terms of syntax. To this end, an important
next step lies in the development of a graded quantitative equational logic for reasoning over
graded quantitative theories.

In another direction, it remains open whether the graded quantitative theory of neighbors
yields a presentation of the neighborhood monad. Once this has been established, we aim to
systematically generate variants of the neighborhood monad with effects with applications to
numerical analysis in mind. For instance, the extension of the graded theory of neighbors
with the operations and equations of convex algebras may lead to methodologies for the
forward error analysis of probabilistic programs.
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A Details for Section 5

Proof of Proposition 5.2. We first verify that F (X) is a TNb-algebra, i.e. it satisfies the
axioms of TNb.

(idempotency): Unwinding the definition of satisfaction, we aim to show that for each q ∈ R
and each point (x, y) ∈ (F (X))q = TqX we have (a, b) ⋆q(a, b) = (a, b). This is automatic by
the definition of ⋆q.

(merge): We want to show that for and r-neighbors (a, b), (c, d) ∈ (F (X))q for q ∈ R we
have cr≤s((a, b) ⋆q

r(c, d)) = (a, b) ⋆q
s(c, d). To this end, we first note that (a, b) ⋆q

r(c, d) is
defined since (a, b), (c, d) are r-neighbors. Thus, by unfolding Definition 4.4, we have that

cr≤s((a, b) ⋆q
r(c, d)) = F (q + r ≤ q + s)((a, b) ⋆q

r(c, d)) = (a, b) ⋆q
s(c, d),

as desired, because F (X)(q + r ≤ q + s) is the inclusion of (F (X))q+r into (F (X))q+s.

(band distance): Given a valuation f : {a =r b, c =r d, a =s c} → (F (X))q, we have that

(F (X))q |= f(a) =r f(b) and (F (X))q |= f(c) =r f(d)

because f is nonexpansive. In particular, e#
q+r(f(a) ⋆r f(b)) and e#

q+r(f(c) ⋆r f(d)) are defined.
Observe that

e#
q+r(f(a) ⋆r f(b)) = f(a) ⋆q+r

r f(b) = (π1(f(a)), π2(f(b)) ∈ (F (X))q+r

and, similarly, f(c) ⋆q+r
r f(d) = (π1f(c), π2(f(d))). With this on hand, note that we have

d(e#
q+r(f(a) ⋆r f(b)), e#

q+r(f(a) ⋆r f(b))) = d((π1(f(a)), π2(f(b)), (π1(f(c)), π2(f(d)))
= dX(π1(f(a)), π1(f(c)))
≤ s

where we have used the definition of the valuation of terms, the definition of the pseudometric
on Tq+rX, and that the composite map π1 · f is nonexpansive, respectively. It follows
that F (X) satisfies (band distance).

(band decomposition): As before, let f : {a =r b, c =r d, a =s c} → (F (X))q be a valuation.
We see by the same argument as for (band distance) that the left hand side subterms
e#

q+r(f(a) ⋆r f(b)) and e#
q+r(f(c) ⋆r f(d)) are defined. Then, in order to see the left hand side

is defined, note that we have

e#
q+r+s((f(a) ⋆r f(b)) ⋆s(f(c) ⋆r f(d))) = e#

q+r(f(a) ⋆r f(b)) ⋆q+r
s e#

q+r(f(c) ⋆r f(d))

Definedness of this term follows by application of (band distance) ensuring the subterms are
s-neighbors. Similarly the right hand side is defined by the triangle inequality:

d(e#
q+r+s(f(a) ⋆r+s f(d))) = dX(π1f(a), π2f(d))

≤ dX(π1f(a), π1f(c)) + dX(π1f(c), π1f(d)) + dX(π1f(d), π2f(d))
= d(a, c) + d(c, d) + dX(π1f(d), π2f(d))
≤ s + r + q
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Given that the terms are defined, the desired equality follows from the definition of ⋆:

e#
q+r+s((f(a) ⋆r f(b)) ⋆s(f(c) ⋆r f(d))) = (π1(f(a)), π2f(b)) ⋆q+r

s (π1(f(c)), π2f(d))
= (π1(f(a)), π2f(d))

= e#
q+r+s(f(a) ⋆r+s f(d))

We conclude that F (X) satisfies (band decomposition).

We may now conclude that F (X) sits in Alg(TNb), as desired. It remains to show
that F (X) has the structure of a free TNb-algebra with respect to the universal morph-
ism η and the forgetful functor U that takes 0-parts. This means that for any valu-
ation h : X → A0 of the variables from X in a TNb-algebra A, there exists a unique
homomorphism h# : F (X) → A such that h = h#

0 · η.
To this end, consider the map h̄q : TqX = (F (X))q → Aq defined for each q ∈ R by

h̄q((a, b)) := h(a) ⋆0
q h(b).

We proceed to show that h̄ is a homomorphism F (X) to A. To this end, first observe
that for the valuation h, the extension h#

q : TΣ,q(X) → Aq is defined on a ⋆q b if (a, b) ∈
(F (X))q = TrX: indeed, Aq |= h(a) =r h(b) because h is nonexpansive. It follows that
h#

r (cq≤r(a ⋆q b)) = A(q ≤ r)(h(a) ⋆0
q h(b)) is defined for all q ≤ r in R. In particular, since A

is a TNb-algebra, it follows from (merge) that

A(q ≤ r)(h(a) ⋆0
q h(b)) = h(a) ⋆0

r h(b) (1)

for all (a, b) ∈ (F (X))q. With this on hand, we may now show that the maps h̄q are the
components of a natural transformation h : F (X) → A, i.e. the following square commutes
for all q ≤ r in R:

(F (X))q (F (X))r

Aq Aq

F(X)(q≤r)

h̄q h̄r

A(q≤r)

Indeed, we compute as follows

h̄q · F (X)(q ≤ r)((a, b)) = h̄r((a, b)) (by defn. of F (X)(q ≤ r))
= h(a) ⋆0

r h(b) (by defn. of h̄r)
= A(q ≤ r)(h(a) ⋆0

q h(b)) (by (1))
= A(q ≤ r) · h̄q((a, b)) (by defn. of h̄q)

It remains to show that

h̄r+q(a ⋆q
r b) = h̄q(a) ⋆q

r h̄q(b) (2)

whenever (F (X))q |= a =r b. In other words, we have dX(π1(a), π1(b)) ≤ r. First, unfold
the left-hand side of (2) as follows:

h̄r+q(a ⋆q
r b) = h̄r+q((π1(a), π2(b)) = h(π1(a)) ⋆0

r+q h(π2(b)) (3)



12 Towards an Axiomatisation of the Neighborhood Monad

Now, we compute as follows from the right- to left-hand side of (2):

h̄q(a) ⋆q
r h̄q(b) = (h(π1(a)) ⋆0

q h(π2(a))) ⋆q
r(h(π1(b)) ⋆0

q h(π2(b)))
= h(π1(a)) ⋆0

r+q h(π2(b)) (by (band decomposition))

Thus, h̄ is a homomorphism of ΣNb-algebras,
Finally, we show that h̄ satisfies the universal mapping property described above. To this

end, we compute as follows:

h̄0(η(x)) = h̄0((x, x)) = h(x) ⋆0
0 h(x) = h(x)

where we use (idempotency) in the last step. Further, if ḡ : F (X) → A is a homomorphism
with g0 · η = h, we have

ḡr((a, b)) = ḡr((a, a) ⋆0
r(b, b)) (by defn. of ⋆r

0)
= ḡ0((a, a)) ⋆0

r ḡ0((b, b)) (since ḡ is a homom.)
= h(a) ⋆0

r h(b) (since ḡ0 · η = h)
= h̄r((a, b)) (by defn. of h̄r)

We conclude that h̄ is the unique homomorphism with h̄0η = h. It now follows that F (X) is
a free TNb-algebra on X, as desired. ◀
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